Could not integral: Infinite or Not-a-Number value encountered
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Chao-Zhen Liu
le 24 Sep 2018
Commenté : Walter Roberson
le 2 Oct 2018
Hi everyone,
Does anyone can tell me what's wrong with my code? I always receives the warnings:
Warning: Infinite or Not-a-Number value encountered.
U = 14; L = 7; d = (U-L)/2;
d_star = d;
T = ( U+L )/(1+1); % symmeric
alpha = 0.10;
Le = 0.05;
for kursi = [0 0.25 0.5 1 2 3]
sigma = fzero( @(sigma) Le - (sigma./d)^2 - ( kursi.*sigma./d).^2, 1 ) ;
mu = kursi*sigma + T;
j = 1;
for n = [25 50 100 150 200]
delta = ( n.^(1/2) ).*kursi ;
B = (n*d_star^2)/sigma^2;
i= 1;
for x = 7:0.01:14
sample = normrnd(mu,sigma,1,n);
% fK = ( 2^(-(n-1)/2)/gamma((n-1)/2) ).*((B.*x.*(1-t)).^(n-3)/2 ).*exp(-B.*x.*(1-t)/2);
fun = @(t) ( sqrt( (B^3).*x./t )./2 ).*( ( 2^(-(n-1)/2) / gamma((n-1)/2) ).*( (B.*x.*(1-t)).^((n-3)/2) ).*exp(-B.*x.*(1-t)/2) ).*( normpdf(sqrt(B*x*T)+delta,0,1) + normpdf(sqrt(B*x*T)-delta,0,1) );
pdf_Lehat(j,i) = integral(@(t) fun(t),0,1);
i = i + 1;
end
j = j + 1;
end
end
x = 7:0.01:14;
plot(x, pdf_Lehat(1,:)); hold on
plot(x, pdf_Lehat(2,:)); hold on
plot(x, pdf_Lehat(3,:)); hold on
plot(x, pdf_Lehat(4,:)); hold on
plot(x, pdf_Lehat(5,:)); hold on
xlabel('X')
I guess the problem may be the handle ,fun, especially the mid part of the code (i.e. the above code, fK). Hope you can give me some advice, thanks!
9 commentaires
Torsten
le 27 Sep 2018
Modifié(e) : Torsten
le 27 Sep 2018
In the evaluation of plotfun, you use B=4.0e4, x=14, n=200 and T=10.5.
Now specify a value for t and evaluate all parts of "plotfun" separately for these parameter values for B,x,n and T. See where there might be problems in the evaluation (e.g. gamma((n-1)/2)= gamma(199/2) seems too huge, 2^(-(n-1)/2)=2^(-199/2) seems too small).
Best wishes
Torsten.
Réponse acceptée
Walter Roberson
le 30 Sep 2018
The values of your integral are so small that they cannot be represented in double precision, and can barely be represented in the Symbolic Toolbox either. Values like 2*10^(-87012)
12 commentaires
Walter Roberson
le 2 Oct 2018
Your term exp(-B.*x.*(1-t)/2) is responsible. The -B*x/2 is coming out at about 35000 and the 1-t flips that to about exp(-35000 *t)
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Calculus dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!