MATLAB Answers

0

Interp1 returning NaN for ode45

Asked by Rafael Félix Soriano on 10 Nov 2018
Latest activity Answered by Bruno Luong
on 10 Nov 2018
The interp1 function returns a NaN value for the time-dependent functions that are later introduced in the ode45 function. Using pchip or spline instead of interp1 returns a value other than NaN, but the solutions are not valid.
My code is the one that follows, thank you in advance.
function [T_V , W_V , x_V , y_V , h_V , Vfin] = viraje(x0 , y0 , h0 , W0 ,...
V0 , Vf , gamma0 , gammaf , chi0 , chif , chip , CD0 , k , S , cE)
clc
g = 9.80665; %m/s2
tfin = (chif - chi0)/chip;
gammap = (gammaf-gamma0)/tfin;
Vp = (Vf-V0)/tfin;
t_interp = linspace(0 , tfin , 10);
V = V0 + Vp*t_interp;
gamma = gamma0 + gammap*t_interp;
mu = atan(chip/g*V.*cos(gamma)./(V/g*gammap + cos(gamma)));
h = Hviraje(t_interp , h0 , V0 , Vp , gamma0 , gammap);
rho = densidad(h);
function dWdt = dif(t,W,t_interp,V,gamma,mu,rho)
if Vp == 0
V = V0;
else
V = interp1(V,t_interp,t,'pchip');
end
if gammap == 0
gamma = gamma0;
else
gamma = interp1(gamma,t_interp,t,'pchip');
end
if Vp == 0 && gammap == 0
mu = mu(1);
else
mu = interp1(mu,t_interp,t,'pchip');
end
if gamma0 == 0 && gammap == 0
rho = densidad(h0);
else
rho = interp1(rho,t_interp,t,'pchip');
end
dWdt = -cE*(0.5*rho.*(V.^2)*S*CD0 + 2*k./(rho*S)*(chip*W.*cos(gamma)./...
(g*sin(mu))).^2 + W.*sin(gamma) + Vp/g*W)
end
tspan = [0 tfin];
ic = W0;
[t,W] = ode45(@(t,W) dif(t,W,t_interp,V,gamma,mu,rho) , tspan , ic);
W_V = W;
h_V = Hviraje(t , h0 , V0 , Vp , gamma0 , gammap);
x_V = Xviraje(t , x0 , V0 , Vp , gamma0 , gammap , chi0 , chip);
y_V = Yviraje(t , y0 , V0 , Vp , gamma0 , gammap , chi0 , chip);
rho = densidad(h_V)';
gamma = gamma0 + gammap*t;
V = V0 + Vp*t;
mu = atan(chip/g*V.*cos(gamma)./(V/g*gammap + cos(gamma)));
T_V = 0.5*rho.*V.^2*S*CD0 + 2*k./(rho*S).*(chip*W.*cos(gamma)./...
(g*sin(mu))).^2 + W.*sin(gamma) + Vp/g*W;
Vfin = Vf;
end
function H = Hviraje(T , h0 , V0 , Vp , gamma0 , gammap)
syms h(t)
eqn = diff(h,t) == (V0 + Vp*t)*sin(gamma0 + gammap*t);
cond = h(0) == h0;
ySol(t) = dsolve(eqn,cond);
H = ySol(T);
end
function X = Xviraje(T , x0 , V0 , Vp , gamma0 , gammap , chi0 , chip)
syms x(t)
eqn = diff(x,t) == (V0 + Vp*t)*cos(gamma0 + gammap*t)*cos(chi0 + chip*t);
cond = x(0) == x0;
ySol(t) = dsolve(eqn,cond);
X = ySol(T);
end
function Y = Yviraje(T , y0 , V0 , Vp , gamma0 , gammap , chi0 , chip)
syms y(t)
eqn = diff(y,t) == (V0 + Vp*t)*cos(gamma0 + gammap*t)*sin(chi0 + chip*t);
cond = y(0) == y0;
ySol(t) = dsolve(eqn,cond);
Y = ySol(T);
end

  1 Comment

interp1() returns nan for most interpolation methods when you ask it to project at locations that are outside the range of the first parameter, unless you pass it the 'extrap' parameter.

Sign in to comment.

Products


Release

R2018a

1 Answer

Answer by Bruno Luong
on 10 Nov 2018
 Accepted Answer

V = interp1(V,t_interp,t,'pchip');
It looks arguments are swapped; I think it should be
V = interp1(t_interp,V,t,'pchip');
and similar for other INTERP1 calls.

  0 Comments

Sign in to comment.