Why the sums of cos(x) over 2*pi range not zero?

7 vues (au cours des 30 derniers jours)
Tianyou Chen
Tianyou Chen le 11 Juil 2012
when evaluating the following codes:
t = linspace(-pi,pi,128); s = sin(t); c = cos(t); sum(s), sum(c)
ans =
6.811558403281303e-15
ans =
-0.999999999999978
Q: should not both be zero?
and try
sum(c(2:end))
ans =
2.5313e-14
also quad(@cos,-pi,pi)
ans =
4.0143e-09
Q: Why the discrepancy?
Thank you for your input.
Thanks J

Réponse acceptée

Greg Heath
Greg Heath le 11 Juil 2012
T = fundamental period
N = number of samples
dt = T/N sampling interval
f0 = 1/T fundamental frequency
(n-1)*f0 harmonics 1<=n <= N
Orthogonality interval
t = t0:dt:t0+T-dt;
t = t0+[0:dt:T-dt];
t = t0+dt*[0:N-1];
help fft
doc fft
Hope this helps
Greg
  2 commentaires
Greg Heath
Greg Heath le 11 Juil 2012
t = t0 + linspace(0,T-dt,N);
t = t0 + dt*linspace(0,N-1,N);
Tianyou Chen
Tianyou Chen le 11 Juil 2012
Thanks Greg. It makes sense now. J

Connectez-vous pour commenter.

Plus de réponses (3)

Luffy
Luffy le 11 Juil 2012
In matlab,
sin(pi) = 1.2246e-16
The expression sin(pi) is not exactly zero because pi is not exactly π

Wayne King
Wayne King le 11 Juil 2012
Modifié(e) : Wayne King le 11 Juil 2012
If you're trying to establish some equivalence between the integral of cos(t) from -pi and pi and the sum of cos(t), you're forgetting a very important part and that is the dt
t = linspace(-pi,pi,1000);
dt = (pi-(-pi))/length(t);
sum(cos(t))*dt
Using other integration routines in MATLAB is more robust than what I've done, but you see it gets you much closer to zero. Think about the formula for a Riemann sum.
  1 commentaire
Tianyou Chen
Tianyou Chen le 11 Juil 2012
Hi Wayne,
Thanks for the answer. But I don't think dt is the issue. try this and nyou will know what I mean: t1 = linspace(-pi,0,64); t2 = linspace(0,pi,64); c1 = cos(t1); c2 = cos(t2); sum(c1) sum(c2)
ans =
-4.4409e-16
ans =
5.7732e-15
or t1 = linspace(0,pi,64); t2 = linspace(pi,2*pi,64);
c1 = cos(t1); c2 = cos(t2); sum(c1) sum(c2)
ans =
5.7732e-15
ans =
-1.1102e-14
Thus with or without dt, the sum of a sin or cos over a period of 2pi should be zero. Here the sin function gives the correct answer. I suspect that the even nature of the cos fuction may have something to do with its suming over (-pi, pi) is -1 while over (0,2*pi) is +1.

Connectez-vous pour commenter.


Wayne King
Wayne King le 11 Juil 2012
I don't think you can say that simply summing cos(t) on an arbitrary grid should be zero. You have to be careful how the grid is constructed. For example
k = 1;
N = 100;
t = 0:99;
sum(cos(2*pi*k/N*t))
sum(sin(2*pi*k/N*t))
are both zero, because I used a Fourier frequency and a specific discrete-time vector. This has to do with the orthogonality of the N-th roots of unity.
  1 commentaire
Tianyou Chen
Tianyou Chen le 11 Juil 2012
Thank Wayne,
You are correct and I should have caught that - the discrete nature of the signal. Cheers, J

Connectez-vous pour commenter.

Catégories

En savoir plus sur Matrix Computations dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by