Regarding the elimination of zero complex terms from State Transition Matrix
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I have a Matrix A defined as
A1 = [-(1/2)*(1+(1/sqrt(2))) 1/4;-(1/2) -(1/2)*(1-(1/sqrt(2)))];
which is equivalent to
A2 = [-0.8536 0.2500; -0.5000 -0.1464];
But when I take eigenvalues in both cases I get different eigenvalues
>> eig(A1)
ans =
-0.5000 + 0.0000i
-0.5000 - 0.0000i
eigenvaules are repeated, but MATLAB considering these as distinct roots(Complex conjugate)
>> eig(A2)
ans =
-0.5057
-0.4943
because of truncation, roots seems to be Different.
I have no problem with A2 matrix. But I want the system to consider only real part of eigenvalues of A1 matrix. Because of +0.0000i and -0.0000i the equations which depend on eigenvalues of A is changing.
I have already used real(egg(A1)) but I wanted to Calculate the state transition matrix i.e. e^(At)
syms t
phi = vpa(expm(A*t),4)
in this expression it should take those repeated roots of -0.5 and -0.5. But it is not taking.
So, please help me out.
Thank You.
0 commentaires
Réponses (2)
madhan ravi
le 13 Déc 2018
Modifié(e) : madhan ravi
le 13 Déc 2018
The imaginary part is not zero:
"Ideally, the eigenvalue decomposition satisfies the relationship. Since eig performs the decomposition using floating-point computations, then A*V can, at best, approach V*D. In other words, A*V - V*D is close to, but not exactly, 0." mentioned here
>> A1 = [-(1/2)*(1+(1/sqrt(2))) 1/4;-(1/2) -(1/2)*(1-(1/sqrt(2)))];
vpa(eig(A1))
ans =
- 0.5 + 0.0000000064523920698794617994748209544899i
- 0.5 - 0.0000000064523920698794617994748209544899i
>>
3 commentaires
Voir également
Catégories
En savoir plus sur Linear Algebra dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!