How to efficiently compare two matrix to get a single reference value?

2 vues (au cours des 30 derniers jours)
balandong
balandong le 15 Jan 2019
Commenté : Rik le 17 Jan 2019
May I know how make the following code more efficient and compact. Specifically, I want to reduce the line
ConfMat (logical (((TrueVal==xx) .*(Predicted==xx))))=xx;
Here are the complete code and its output
TrueVal= [1 1 1 2 2 2 3 3 3 1 2]';
Predicted=[1 2 3 1 2 3 1 2 3 3 2]';
ConfMat = single(ones(length(TrueVal), 1));
ConfMat (logical (((TrueVal==1) .*(Predicted==2))))=4;
ConfMat (logical (((TrueVal==1) .*(Predicted==3))))=7;
ConfMat (logical (((TrueVal==2) .*(Predicted==1))))=2;
ConfMat (logical (((TrueVal==2) .*(Predicted==2))))=5;
ConfMat (logical (((TrueVal==2) .*(Predicted==3))))=8;
ConfMat (logical (((TrueVal==3) .*(Predicted==1))))=3;
ConfMat (logical (((TrueVal==3) .*(Predicted==2))))=6;
ConfMat (logical (((TrueVal==3) .*(Predicted==3))))=9;
% Final output
% ConfMat= [1;4;7;2;5;8;3;6;9;7;5]
Thanks in advance
  3 commentaires
madhan ravi
madhan ravi le 15 Jan 2019
Second Rik , I can't think of any solution other than that.
balandong
balandong le 15 Jan 2019
Thanks both of you, I have the same idea about using for loop. I just wonder if there is an elegant ways of doing it.

Connectez-vous pour commenter.

Réponse acceptée

Rik
Rik le 15 Jan 2019
Modifié(e) : Rik le 15 Jan 2019
I don't know if this is elegant enough for you, but it does work.
TrueVal= [1 1 1 2 2 2 3 3 3 1 2]';
Predicted=[1 2 3 1 2 3 1 2 3 3 2]';
%legend: TrueVal Predicted value
matrix=[1 2 4
1 3 7
2 1 2
2 2 5
2 3 8
3 1 3
3 2 6
3 3 9];
ConfMat = single(ones(numel(TrueVal), 1));
for n=1:size(matrix,1)
xx_TrueVal=matrix(n,1);
xx_Predicted=matrix(n,2);
L=((TrueVal==xx_TrueVal) & (Predicted==xx_Predicted));
ConfMat(L)=matrix(n,3);
end
isequal(ConfMat,single([1;4;7;2;5;8;3;6;9;7;5]))
Or maybe you think this is a more elegant method:
TrueVal= [1 1 1 2 2 2 3 3 3 1 2]';
Predicted=[1 2 3 1 2 3 1 2 3 3 2]';
% %legend: TrueVal Predicted value
% matrix=[1 2 4
% 1 3 7
% 2 1 2
% 2 2 5
% 2 3 8
% 3 1 3
% 3 2 6
% 3 3 9];
% matrix=accumarray(matrix(:,1:2),matrix(:,3),[],[],1);
matrix = [...
1 4 7
2 5 8
3 6 9];
ConfMat = single(ones(numel(TrueVal), 1));
for n_true=1:size(matrix,2)
for n_pred=1:size(matrix,1)
L=((TrueVal==n_true) & (Predicted==n_pred));
ConfMat(L)=matrix(n_true,n_pred);
end
end
clc
isequal(ConfMat,single([1;4;7;2;5;8;3;6;9;7;5]))
  3 commentaires
balandong
balandong le 17 Jan 2019
Hi Rik,
Thanks for the insight. It does look smart than my initial idea. However, the proposal by Bruno is somewhat more compact. I had to accept his answer for this.
Rik
Rik le 17 Jan 2019
@balandong no problem. Both solutions have their own situation where they are the best option. It is your code, and your question, so it is on you to choose.
Just in case someone else prefers my solution, I'll keep my answer here.

Connectez-vous pour commenter.

Plus de réponses (1)

Bruno Luong
Bruno Luong le 15 Jan 2019
TrueVal= [1 1 1 2 2 2 3 3 3 1 2]';
Predicted=[1 2 3 1 2 3 1 2 3 3 2]';
[ut,~,it] = unique(TrueVal);
[up,~,ip] = unique(Predicted);
ConfM = [1 4 7;
2 5 8;
3 6 9];
assert(size(ConfM,1)==length(ut),'ConfM must have same #rows than #TrueVal');
assert(size(ConfM,2)==length(up),'ConfM must have same #rows than #Predicted');
ConfMat = ConfM(sub2ind(size(ConfM),it,ip))
returns
ConfMat =
1
4
7
2
5
8
3
6
9
7
5

Catégories

En savoir plus sur 2-D and 3-D Plots dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by