How to use PCA (Principal component analysis) with SVM for classification in Mathlab?

3 vues (au cours des 30 derniers jours)
Braiki Marwa
Braiki Marwa le 18 Jan 2019
Commenté : the cyclist le 26 Juin 2023
The input data that I have is a matrix X (490*11) , where the rows of X correspond to observations and the 11 columns to correspond (predictors or variables). I need to apply the PCA on this matrix to choose a set of predictors (as a feature selection technique) .In Matlab, I know that I can use this function [coeff,score,latent]= pca(X) for applying the PCA on input matrix, but I don't know how to use the output of this function to create a new matrix that I need to use for training Support Vector Machine classifier. Please Help me!
  2 commentaires
Pratyush
Pratyush le 25 Juin 2023
I will answer this tomorrow
the cyclist
the cyclist le 26 Juin 2023
They've waited over four years for an answer, so I guess they can wait another day.

Connectez-vous pour commenter.

Réponses (0)

Catégories

En savoir plus sur Dimensionality Reduction and Feature Extraction dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by