How do I solve a system of equations?
10 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello,
suppose I've got four equations which depend on one another and one of them depends on the time:
a = f(b);
b = f(c);
c = f(d);
d = f(a,t);
How can a system like this be solved? I thought about using one of the ode solvers but failed to implement the functions. Can anybody give me a hint?
Thanks in advance,
J
1 commentaire
Walter Roberson
le 15 Août 2012
I am confused about you using f() with one argument in most places, but using it with two arguments for "d".
Réponse acceptée
Isktaine
le 14 Août 2012
Modifié(e) : Isktaine
le 14 Août 2012
You need to have a function which the ode solvers can act on.
[t,y] = ode45('YourODEFunction', [0 50], [a(0) b(0) c(0) d(0)])
An example of how to create the function:
function dA=YourODEFunction(x,A)
dA(1)=f(b); %Equation for a,
dA(2)=f(c); %Equation for b
dA(3)=f(d); %Equation for c
dA(4)=f(a,t); %Equation for d
dA=dA'
Note that when you have f(b) (and all the others) you'd have to type in an experission eg
dA(1)=3*A(2) %Coding up of a=3*b
Any time your equation would have a 'b' use A(2), any time you would use an 'a' use A(1), any time you would use a 'c' use A(3) and 'd' use A(4). Does that make sense?
5 commentaires
Isktaine
le 17 Août 2012
I'm sorry! I think I misunderstood your first question then. I was assuming all of these were differentials i.e. a'=f(b). How silly of me to make that assumption! Are any of the equations actually differentials?
If there are no differentials then you have to uncouple the system before it can solved numerically. You could just use direct substitution to solve them by hand to get one equation for d only in terms of t, the use back substitution to find values for c,b and a once you have d for any t.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!