Parallel Matrix row operation

12 vues (au cours des 30 derniers jours)
Rui Xiang
Rui Xiang le 21 Mai 2019
Commenté : Matt J le 22 Mai 2019
Hi, I have a function which project a matrix to the matrix space with row sum equal to 1 and constrained by a sparsity structure. Here is the code
function [out] = Proj_DoubleStochasticM_reloc(Y)
global sparsity
Y = full(Y);
ii = [];
jj = [];
ss = [];
for i=1:length(sparsity)
ii = [ii;ones(size(sparsity{i}))*i];
jj = [jj;sparsity{i}];
ss = [ss Y(i,sparsity{i}) - (sum(Y(i,sparsity{i}))-1)/length(sparsity{i})];
end
[n,m] = size(Y);
out = sparse(ii, jj', ss', n,m);
So basically, the input is sparse. After I transform it to full, then a do a for loop on each row. The operation in each row is
Y(i,sparsity{i}) - (sum(Y(i,sparsity{i}))-1)/length(sparsity{i})
e.g
input = [1 2 3 4 5]
sparisty = [1 2]
then output is [1-(1+2-1)/2, 2-1-(1+2-1)/2, 0, 0, 0]
I was wondering whether there are any parallel approaches to do it, or direct methods on sparse matrix. Currently the most expensive line is last one, and full(), namely, transform sparsity; second is the for loop.
Thank you very much:)

Réponse acceptée

Matt J
Matt J le 21 Mai 2019
Modifié(e) : Matt J le 22 Mai 2019
function out = Proj_DoubleStochasticM_reloc(Y,sparsity)
[m,n]=size(Y);
[I,J]=deal(sparsity);
for k=1:length(sparsity)
I{k}(:)=k;
end
I=cell2mat(I); J=cell2mat(J);
bw=sparse(I,J,true,m,n);
Y=Y.*bw;
out=Y-bw.*(sum(Y,2)-1)./sum(bw,2); %EDITED
end
  2 commentaires
Rui Xiang
Rui Xiang le 22 Mai 2019
Thanks very much! It worked perfectly!
Matt J
Matt J le 22 Mai 2019
I think I had a mistake. I think the last line should be
out=Y-bw.*(sum(Y,2)-1)./sum(bw,2);

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Loops and Conditional Statements dans Help Center et File Exchange

Produits


Version

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by