How can I change the response to forced excitation?

1 vue (au cours des 30 derniers jours)
sam plant
sam plant le 27 Août 2019
Commenté : Anmol Dhiman le 5 Sep 2019
function Structural_drift
% Define initial conditions x(0) & x'(0)
x0 = [0 1];
% Time interval
t = [0 120];
% Solve equation of motion
[T, X] = ode45(@EOM, t, x0);
plot(T, X(:,1), T, X(:,2));
% EOM function & variables
function dx = EOM(t, x)
% Define initial conditions x(0) & x'(0)
% Time interval
M =87500; % Mass (kg)
k = 20000; % Stiffness value
c = 170; % Damping constant of structure
Cd = 5000;
Fd = Cd*x(2); %damping force
f=5; %forcing frequency in Hz
w=2*pi*f; %forcing frequency
F = 500000*sin(w*t) ; %excitation force
term1 = F;
term2 = k*x(1);
term3 = c*x(2);
term4 = Fd;
term5 = M;
dx = [x(2); ((term1 - term2 - term3 - term4)/(term5))]; % Equation of motion
end
end
When using ODE45 for an equation of motion. The forcing amplitude is F. When i change this value the peak value of displacement from the solver isn't changing, it's always the same value regardless of the force size?
any help would be seriously appreciated
  1 commentaire
Anmol Dhiman
Anmol Dhiman le 5 Sep 2019
I am unable to reproduce the above issue as I am getting different peak value of displacement as shown in the figures below. Can you provide an example with plots explaining the issue.
img2_forced_excitation.png
img3_forced_excitation.png
img1_forced_excitation.png

Connectez-vous pour commenter.

Réponses (0)

Catégories

En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by