Avoid training certain neurons
8 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hamid Moazed
le 22 Déc 2019
Commenté : Hamid Moazed
le 23 Déc 2019
Using the Deep Learning Toolbox, I wish to construct a simple feed-forward network for a simulation, however assume I have already trained one of the hidden neurons (out of several) with the correct weights and biases and I don't want them to change during training. How can I make this single specific neuron be "constant" and not get retrained with new wights and biases while the rest of the network is being trained?
0 commentaires
Réponse acceptée
Hiro Yoshino
le 23 Déc 2019
There is an option to keep specific layers' learning rates low so you can fix them as they are.
for example
fullyConnectedLayer(<outputsize>, 'WeightLearnRateFactor', 0, 'BiasLearnRateFactor', 0)
This way, you would multiply zero to the global learning rate, which is set via trainingOptions function, and thus the learning rates of the weights in the fully-connected-layer are set as zero.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Sequence and Numeric Feature Data Workflows dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!