Info
Cette question est clôturée. Rouvrir pour modifier ou répondre.
My answer is not matching with attached file
    5 vues (au cours des 30 derniers jours)
  
       Afficher commentaires plus anciens
    
syms k r  
a=sym('a'); b = sym('b');L=sym('L'); M = sym('M');  b1 = sym('b1');
m=7;  F = sym(zeros(m,1));   F(1)=0;  F(2)=1;    F(3)=a;                
G = sym(zeros(m,1));   G(1)=0;  G(2)=1/2;  G(3)=b;            
for k=1:7
    for r = 1:k
         F3 = F(1)+ F(2)+F(3);    G3 = G(1)+G(2)+G(3);
F(k+3)= ( F3+sum((r+1)*F(r+1)*(k-r+1)*F(k-r+1)) - sum((k-r+1)*(k-r+2)*F(k-r+1)*(F(r)+G(r)))+ (M+L)*(k)*F(k+1))/((1+b1)*(k+1)*(k+2)*(k));
G(k+3) = (G3+ sum((r+1)*G(r+1)*(k-r+1)*G(k-r+1)) - sum((k-r+1)*(k-r+2)*G(k-r+2)*(F(r)+G(r))) + (M+L)*(k)*G(k+1))/((1+b1)*(k+1)*(k+2)*(k));
    end
end
% %%%%%
for N=1:6
disp(F(N))
disp(G(N))
end
f=sum(x^k*F(k),k,0,7)
g=sum(x^k*G(k),k,0,7)
%%%%%%%
Any reply will be greatly appreciated
   After getting F(N)  and  G(N),  I  neeed to find then    f   and   g
8 commentaires
  Walter Roberson
      
      
 le 14 Jan 2020
				You have not posted the recurrence formula, so we are restricted to pointing out parts of the code that look suspicious, without being able to make any suggestions as to what code would work.
Réponses (0)
Cette question est clôturée.
Voir également
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

