I think I need to clarify, the primary issue I am having is translating the entered equation into something usable by matlab, how should I do this?
Coding a function to use the false position method to approximate roots
9 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Im trying to code together a function to approximate roots using the false psotion method. My current issues is that I can't understand how I should go about plugging in a polynomial into matlab in a standard form.
function [root, fx, ea, iter] = falsePosition(func, xl, xu, es, maxit, varargin)
%falsePosition finds the root of a function using false position method
%please input the func value in this format ((8x^4)-(2x^2)+x)---->[8 0 -2 1]
if nargin <3
error('3 or more arguements required')
elseif nargin<4
es=.0001;
maxit=200;
end
plop=1;
for iter= 1:maxit
if plop==1;
root1= xl-(((polyval(func,xl))*(xu-xl))/((polyval(func,xu))-(polyval(func,xl))));
xu=root1;
plop=2;
ea=10000000;
elseif ea>es
root2= xl-(((polyval(func,xl))*(xu-xl))/((polyval(func,xu))-(polyval(func,xl))));
ea=((root2-root1)/root2)*100;
xu=root2;
else
break
end
end
I need to be able to plug in xu and xl into the equation, and I need to be able to plug the equation into the function in the form of ((3*x^3)+(8*x^2)*1) and not in the form of an array as [3 8 1]
2 commentaires
Walter Roberson
le 26 Déc 2021
((8x^4)-(2x^2)+x) should be [8 0 -2 1 0] not [8 0 -2 1] -- the 0 at the end is the constant coefficient.
Réponses (1)
darova
le 2 Mar 2020
try matlabFunction
str = input('enter a function:\n');
f = matlabFunction(str);
Voir également
Catégories
En savoir plus sur Interpolation dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!