Plot with two related x-axes

93 vues (au cours des 30 derniers jours)
Christopher Saltonstall
Christopher Saltonstall le 9 Mar 2020
This question may seem like it has been answered in the forums but I believe there is a subtlety that has not been directly answered. I want to plot the optical absorption coefficient of a material as a function of both photon wavelength (bottom x-axis) and energy (top x-axis) similar to this figure shown below. There are two problems with this task that I have not found sufficiently addressed. The first is to ensure that all of the points in the bottom axis line up with the points in the top axis (we need to some how link the two x-axes). Second, because of how energy and wavelength are related, one axis will be ascending while the other will be descending (Matlab doesn't like descending x-axes). How can you make the referenced plot? Can someone recreate the reference plot using the following data taken from the reference plot?
clear
close all
data = [0.35737704918032787, 92649850.48039015
0.3819672131147541, 72475211.53588514
0.41147540983606556, 55967196.301264346
0.4229508196721312, 51126728.207795605
0.4557377049180328, 47937263.23846833
0.5016393442622952, 43803474.996365294
0.539344262295082, 40544606.59504045
0.5688524590163934, 34277014.89316264
0.5950819672131147, 25461360.619704828
0.6229508196721312, 16618285.037019765
0.6655737704918033, 10037712.197086804
0.7213114754098361, 6724703.556947659
0.7950819672131147, 4169337.0144349397
0.8836065573770491, 2722604.5977291227
0.9557377049180328, 1997130.2156342946
1.0344262295081967, 1523018.3932672704
1.1049180327868853, 1255113.4937515096
1.1852459016393442, 1034416.372625131
1.2737704918032788, 886319.8712540427
1.359016393442623, 779309.6059234422
1.4540983606557378, 609961.3425615291
1.4918032786885247, 502533.5248888627
1.5098360655737708, 398203.214420678
1.5196721311475412, 299601.3683763488
1.5213114754098362, 195504.2893801002
1.5262295081967214, 119588.7737216253
1.5360655737704918, 65114.84416472715
1.5475409836065577, 38316.26954492593
1.5508196721311474, 25329.082065449114
1.559016393442623, 18331.533361062826
1.5688524590163935, 14713.897024069562
1.5934426229508198, 11361.99263934681
1.6196721311475408, 8773.786275376307
1.6508196721311474, 6433.761487810411
1.6754098360655738, 5032.800618487584
1.7049180327868854, 3787.196421050415
1.7327868852459019, 2886.942647505133
1.7557377049180327, 2287.679320744783
1.777049180327869, 1933.9100405245356];
%planks constant
h = 4.135e-15; %eV s
%speed of light
c = 3e8; %m/s
%Ge absorption coef
alpha = data(:,2); %1/m
%wavelength
lambda = data(:,1); %microns
%energy
E = h*c./(lambda*1e-6); %eV
figure(1)
plot(lambda,alpha,'r')
xlabel('Wavelength (\mum)')
ylabel('\alpha (m^{-1})')
set(gca,'Yscale','log')
figure(2)
plot(E,alpha,'r')
xlabel('Energy (eV)')
ylabel('\alpha (m^{-1})')
set(gca,'Yscale','log')
  6 commentaires
Adam Danz
Adam Danz le 9 Mar 2020
Note that a similar solution was offered for the same question (and same OP) a while back,
Christopher Saltonstall
Christopher Saltonstall le 9 Mar 2020
Modifié(e) : Christopher Saltonstall le 9 Mar 2020
That's my question but the code does not work. Since there was no activity on it in about 2 years I reposted it. Note, the answer was not accepted.

Connectez-vous pour commenter.

Réponse acceptée

Ameer Hamza
Ameer Hamza le 9 Mar 2020
Modifié(e) : Ameer Hamza le 2 Oct 2020
data = [0.35737704918032787, 92649850.48039015
0.3819672131147541, 72475211.53588514
0.41147540983606556, 55967196.301264346
0.4229508196721312, 51126728.207795605
0.4557377049180328, 47937263.23846833
0.5016393442622952, 43803474.996365294
0.539344262295082, 40544606.59504045
0.5688524590163934, 34277014.89316264
0.5950819672131147, 25461360.619704828
0.6229508196721312, 16618285.037019765
0.6655737704918033, 10037712.197086804
0.7213114754098361, 6724703.556947659
0.7950819672131147, 4169337.0144349397
0.8836065573770491, 2722604.5977291227
0.9557377049180328, 1997130.2156342946
1.0344262295081967, 1523018.3932672704
1.1049180327868853, 1255113.4937515096
1.1852459016393442, 1034416.372625131
1.2737704918032788, 886319.8712540427
1.359016393442623, 779309.6059234422
1.4540983606557378, 609961.3425615291
1.4918032786885247, 502533.5248888627
1.5098360655737708, 398203.214420678
1.5196721311475412, 299601.3683763488
1.5213114754098362, 195504.2893801002
1.5262295081967214, 119588.7737216253
1.5360655737704918, 65114.84416472715
1.5475409836065577, 38316.26954492593
1.5508196721311474, 25329.082065449114
1.559016393442623, 18331.533361062826
1.5688524590163935, 14713.897024069562
1.5934426229508198, 11361.99263934681
1.6196721311475408, 8773.786275376307
1.6508196721311474, 6433.761487810411
1.6754098360655738, 5032.800618487584
1.7049180327868854, 3787.196421050415
1.7327868852459019, 2886.942647505133
1.7557377049180327, 2287.679320744783
1.777049180327869, 1933.9100405245356];
fig = figure();
% setup bottom axis
ax = axes();
hold(ax);
ax.YAxis.Scale = 'log';
xlabel(ax, 'Wavelength ($\mu$m)', 'Interpreter', 'latex', 'FontSize', 14);
ylabel(ax, '$\alpha$ ($m^{-1}$)', 'Interpreter', 'latex', 'FontSize', 14);
% setup top axis
ax_top = axes(); % axis to appear at top
hold(ax_top);
ax_top.XAxisLocation = 'top';
ax_top.YAxisLocation = "right";
ax_top.YTick = [];
% ax_top.XDir = 'reverse';
ax_top.Color = 'none';
xlabel(ax_top, 'Energy($e$V)', 'Interpreter', 'latex', 'FontSize', 14);
% linking axis
linkprop([ax, ax_top],{'Units','Position','ActivePositionProperty'});
ax.Position(4) = ax.Position(4) * .96;
h = 4.135e-15; %eV s
c = 3e8; %m/s
lambda = linspace(0.2,1.8,9); %m
E = h*c./lambda*10^6; % 10^6 because lambda is in microns
% configure limits of bottom axis
ax.XLim = [lambda(1) lambda(end)];
ax.XTick = lambda;
ax.XAxis.TickLength = [0.015, 0.00];
ax.YAxis.TickLength = [0.02, 0.00];
ax.XAxis.MinorTick = 'on';
ax.XAxis.MinorTickValues = linspace(0.2,1.8,17);
% configure limits and labels of top axis
y_ticks = [0.7 0.8 0.9 1 2 3 4 5];
lambda_y_tick = h*c./y_ticks*10^6;
ax_top.XLim = [lambda(1) lambda(end)];
ax_top.XTick = fliplr(lambda_y_tick);
ax_top.XTickLabel = compose('%1.1f', fliplr(y_ticks));
ax_top.XAxis.TickLength = [0.02, 0.00];
ax_top.XAxis.MinorTick = 'off';
plot(ax, data(:,1), data(:,2), 'r-', 'LineWidth', 3);
  18 commentaires
Zachary Davonski
Zachary Davonski le 2 Oct 2020
Thanks!
Adila Nalisa Binti Mohd Roslan
Hi Ameer Hamza,
May I know is it possible to use your code to plot like a picture below? Because I would like to plot 2 x-axis as per depicts in figure below.

Connectez-vous pour commenter.

Plus de réponses (0)

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by