odeEueler Explicit Eurlers method
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Yo mama
le 26 Avr 2020
Modifié(e) : Yo mama
le 28 Avr 2020
Ok so I am working on a project and I will put the image of the problem statement and there must be somthing fundemental that I am doing incorrectly because I feel like this methodology is right for the problem
Here is my host file
%% Definining Initial Parameters for the Eueler
%yINI = [0;0]; %This describes the IC for the displacement and velocity
%h = [0.8 0.5 0.1]; %Given step sizes we will use in plots
%te = [0 8]; % ' Time Elapsed' from 0s-->8s our x-axis
function [t,y,ydot] = odeEULER(ODE1,ODE1,a,b,h,yINI)
%a - initial value for t
%b - last value of t
%h - step size
%yINI - y and y dot initial values
%Output variables- t,y,ydot
t(1) = 0; y(1) = yINI; ydot = yINI;
N= (b-a)/h;
for i=1:N
t(i+1)=t(i) + h;
y(i+1)=y(i) + ODE1(t(i),y(i))*h;
ydot(i+1)=ydot(i) + ODE2(t(i),ydot(i))*h;
end
and now here is my scrpit file:
clc; clear all
a=0;b=8;h = [0.8 0.5 0.1];yINI = [0;0];
[t,y,ydot] = odeEULER(@dydt,@dydotdt,a,b,h,yINI)
figure(1)
plot(t,y,'LineWidth',2)
xlabel('Time(s)')
ylabel('Distance travelled(m)')
title('Displacement over time')
grid on
figure(2)
plot(t,ydot,'LineWidth',2)
xlabel('Time(s)')
ylabel('Velocity (m/s)')
title('Velocity vs Time')
grid on
function dydx=dydt(t,y,ydot)
dydx=ydot;
end
function dydx=dydotdt(t,y,ydot)
g=32.2,w= 3000-800*t;T = 8000;D =((0.005*g)*(ydot^2));
dydx=((g/w)*(T-w-D));
end
Please let me know what I am to
0 commentaires
Réponse acceptée
Thiago Henrique Gomes Lobato
le 26 Avr 2020
You had many syntax errors on your code. Here is a version with them fixed and it should work. Although a negative weighting is not something that makes sense to me (it happens for t>3.75 s following your command).
clc; clear all
a=0;b=8;h = [0.8 0.5 0.1];yINI = [0;0];
for idxH=1:3
[t,y,ydot] = odeEULER(@dydt,@dydotdt,a,b,h(idxH),yINI);
figure
plot(t,y,'LineWidth',2)
xlabel('Time(s)')
ylabel('Distance travelled(m)')
title(['Displacement over time. h = ',num2str(h(idxH))])
grid on
figure
plot(t,ydot,'LineWidth',2)
xlabel('Time(s)')
ylabel('Velocity (m/s)')
title(['Velocity vs Time. h = ',num2str(h(idxH))])
grid on
end
function dydx=dydt(ydot)
dydx=ydot;
end
function dydx=dydotdt(t,ydot)
g=32.2;
w= 3000-800*t;T = 8000;D =((0.005*g)*(ydot^2));
dydx=((g/w)*(T-w-D));
end
function [t,y,ydot] = odeEULER(ODE1,ODE2,a,b,h,yINI)
%a - initial value for t
%b - last value of t
%h - step size
%yINI - y and y dot initial values
%Output variables- t,y,ydot
N= (b-a)/h;
y = zeros(N,1);
ydot = zeros(N,1);
t = zeros(N,1);
t(1) = 0; y(1) = yINI(1); ydot(1) = yINI(2);
for i=1:N-1
t(i+1)=t(i) + h;
y(i+1)=y(i) + ODE1(ydot(i))*h;
ydot(i+1)=ydot(i) + ODE2(t(i),ydot(i))*h;
end
end
1 commentaire
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!