Why ODE15s does not work like an Euler's method with fixed point?
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
When i run this code for Euler´s method, it runs Ok, but when i try to use ODE15s it shows a wrong answer. It is ODE15s well defined?. I'll appreciate your help.
function []=cr_NRTL(X0,x1,x2,l,L1)
global X1 X2 Xea estado
x1inicial=x1;
x2inicial=x2;
sol_daes=2; %1 Euler, 2 ODE
tspan=[0 l];
opts=odeset('NormControl','on','AbsTol',1e-10,'RelTol',1e-5);
for k=1:2
x1=x1inicial;
x2=x2inicial;
for i=1:L1
X1 = x1; X2 = x2;
%Para solucionar la envolvente
options = optimset('Display','off');
lb=[0,0,0,0,0,0,0,0,300];
ub=[1,1,1,1,1,1,1,1,400];
Xea=lsqnonlin(@funcion,X0,lb,ub,options);
X0=Xea;
for j=1:9
xea(i,j)=Xea(j);
end
%Para evaluar las residuales del ELV fuera de la envolvente
if k==1 && (Xea(7)>0.9999 || Xea(8)>0.9999)
if Xea(7)>1 || Xea(8)>1
Xea
end
cr_NRTL2(x1,x2,l);
break
else
xglobala=[x1; x2];
%Para solucionar las residuales del ELLV
switch sol_daes
case 1 %Euler
switch k
case 1
tao=0.02;
dxdt=cambioELLV(xglobala);
xsa=[xglobala(1)+dxdt(1)*tao;
xglobala(2)+dxdt(2)*tao];
case 2
tao=0.1;
dxdt=cambioELLV(xglobala);
xsa=[xglobala(1)-dxdt(1)*tao;
xglobala(2)-dxdt(2)*tao];
end
case 2 %ODE
switch k
case 1
[~,dxdt]=ode15s(@cambioELLV,tspan,xglobala,opts);
case 2
[~,dxdt]=ode15s(@cambioELLV,-tspan,xglobala,opts);
end
xsa=dxdt;
end
x1=xsa(1);
x2=xsa(2);
% if k==2
for j=1:2
xsalida(i,j)=xglobala(j);
% end
end
end
% end
% if k ==2
xe = xea;
% end
end
toc
% Grafica
hold on
if estado==1
plot(xe(:,1),xe(:,2),'r')
end
plot(xsalida(:,1),xsalida(:,2),'b');
end
end
5 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
