Loopin Matrix Multiplication Performance Improvement

1 vue (au cours des 30 derniers jours)
Tommaso Belluzzo
Tommaso Belluzzo le 3 Mai 2020
Hi all! I'm struggling to reduce computation time on a function I created:
function [beta,covariance,residuals] = hac_regression(y,x,ratio)
t = length(y);
[beta,~,residuals] = regress(y,x);
h = diag(residuals) * x;
q_hat = (x.' * x) / t;
o_hat = (h.' * h) / t;
l = round(ratio * t,0);
for i = 1:(l - 1)
o_tmp = (h(1:(t-i),:).' * h((1+i):t,:)) / (t - i);
o_hat = o_hat + (((l - i) / l) * (o_tmp + o_tmp.'));
covariance = (q_hat \ o_hat) / q_hat;
Below, a result of a profiling run:
I think nothing can be done with respect to built-in "regress" call.
But I'm wondering if the loop can somehow be optimized in order to reduce the overhead. On computations performed on very large datasets, even a small 5% improvement may dramatically reduce the overall computation time.
Below a reproducible example:
y = rand(100,1);
x = rand(100,3)
[beta,covariance,residuals] = hac_regression(y,x,0.1);
Thanks for your help!

Réponses (0)


En savoir plus sur Logical dans Help Center et File Exchange




Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by