Problem with cholesky decomposition
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Peter Ouwehand
le 19 Mai 2020
Commenté : Christine Tobler
le 19 Mai 2020
When I apply the chol function to A = [1 -1; 0 1], it correctly informs me that the matrix is not positive definite.
But when I run chol(A, 'lower'), the answer is the identity matrix [1 0; 0 1].
Can anyone replicate this? Any reasons why this should be so?
0 commentaires
Réponse acceptée
David Goodmanson
le 19 Mai 2020
Hi Peter,
when you use the 'lower' option, chol assumes that the upper triangle is the complex conjugate transpose of the lower triangle. In this case that means that chol assumes the matrix is [1 0; 0 1], the identity matrix. So of course the cholesky decomposition is also the identity matrix.
1 commentaire
Christine Tobler
le 19 Mai 2020
When chol(A) is called without the 'lower' or 'upper' option, this is treated as if the 'upper' option had been chosen: So in the first example, chol assumes the matrix is [1 -1; -1 1]. This is because the Cholesky decomposition only works for symmetric matrices.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Linear Algebra dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!