Effacer les filtres
Effacer les filtres

Optimizing constants applied to multiple vectors with multiple constraints

1 vue (au cours des 30 derniers jours)
Craig
Craig le 8 Juin 2020
Commenté : Craig le 10 Juin 2020
Hello, I have 6 vectors given below. I would like to find two constants, a and b, such that:
1) the elements of sqrt( (a*U).^2 + (b*V).^2 ) are as small as possible (hopefully all with values < 0.8)
2) the elements of sqrt( (a*W).^2 + (b*X).^2 ) are as close to 1 as possible
3) the elements of sqrt( (a*Y).^2 + (b*Z).^2 ) are as large as possible (hopefully all with values > 1.2)
How would one go about setting up this problem to find the best a and b using the optimization toolbox?
Thanks for any assistance you can provide.
U = [0.255533929
0.225391099
0.309547494
0.654021159
0.620657919
0.702112095
1.191504738
1.209453366
1.211036147
1.045063574
1.047682214 ];
V = [0.711221344
0.480397832
0.855346308
0.641913032
0
0
0
0.450686486
0.886286133
0.377284731
0.715048781 ];
W = [0.703234145
0.661481123
0.680938355
1.348926117
1.213094284
1.227020665
1.373111841
1.764042991 ];
X = [1.232745135
1.357287095
1.28138892
0
1.209100227
1.266457293
0.505682363
0 ];
Y = [0.822623864
0.751947223
0.717610808
0.733428167
0.667499868
1.328856667
1.242252969
1.387983711
1.070372916
1.045063574
1.414452191
1.373461829
2.000592955 ];
Z = [2.07106942
1.593285407
1.602925001
1.970190532
1.732521225
2.181746415
1.062587656
3.489796952
0.886469414
0.377284731
1.234992392
1.826285175
0 ];
a = 1 / 1.556484554;
b = 1 / 1.560365817;
figure,
plot(sqrt( (a*U).^2 + (b*V).^2 ), 'go', 'MarkerFace', 'g')
hold on
plot(sqrt( (a*W).^2 + (b*X).^2 ), 'yo', 'MarkerFace', 'y')
plot(sqrt( (a*Y).^2 + (b*Z).^2 ), 'ro', 'MarkerFace', 'r')
grid on; grid minor
  1 commentaire
Craig
Craig le 10 Juin 2020
Hi Alan, Thanks for taking a look. I am only allowed to change "a" and "b". I'm not sure how to write the optimization parameters to make:
sqrt((a*U).^2 + (b*V).^2 ) as small as possible
sqrt((a*Y).^2 + (b*Z).^2 ) as large as possible
and sqrt( (a*W).^2 + (b*X).^2 ) are as close to 1 as possible
all happening at the same time.
Hope that clarifies the issue. I do know how to minimize or maximize a function, or make it equal to a value, just not sure how to do all three at once.

Connectez-vous pour commenter.

Réponses (1)

Alan Weiss
Alan Weiss le 10 Juin 2020
I do not understand your question. What are you allowed to vary? Are there any constraints? I mean, why not just set all elements of U and V to zero?
Alan Weiss
MATLAB mathematical toolbox documentation

Catégories

En savoir plus sur Get Started with Optimization Toolbox dans Help Center et File Exchange

Produits


Version

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by