Output is coming out as a large expression
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
When I run the code below, the outputs appear as a large expression. Here, I have a upper limit in one of the sym summation min() condition. Pl somebody help me to get the output in simple numeric form.
clc;
syms n m p q s l up_lt
mu=1.0051;
nu=0.1015;
eta=0.0922;
k=2;
assume(p>=0);
assume(q>=0);
assume(l>=0);
assume(s>=0);
assume(m>=0);
assume(n>=0);
x1= 2.*q + l -m;
y1= 2.*p - n;
up_lt= min(x1,y1); %%%%%%%%% Upper limit of the sum in sGnmp3
Gnmp1= (((-1).^(k-l))-1).*nchoosek(k,l).*((eta.*(mu-nu)).^(k-l)).*((mu.*nu./2).^l);
sGnmp1= symsum(Gnmp1,l,0,k);
Gnmp2= (1./(factorial(p).*factorial(q))).*nchoosek(p,n-p).*nchoosek(q,m-q);
sGnmp2= symsum(symsum(Gnmp2,q,0,m),p,0,n);
Gnmp3= ((2.*mu./nu).^s).*factorial(s).*nchoosek(x1,s) .*nchoosek(y1,s).*hermiteH(x1-s,0).*hermiteH(y1-s, 0);
sGnmp3= symsum(Gnmp3,s,0,up_lt);
Gnmm1= (((-1).^(k-l))+1).*nchoosek(k,l).*((eta.*(mu-nu)).^(k-l)).*((mu.*nu./2).^l);
sGnmm1= symsum(Gnmm1,l,0,k);
Gnmp= symfun((sqrt(factorial(n).*factorial(m)).*((nu./(2.*mu)).^((n+m)./2)).*sGnmp1.*sGnmp2.*sGnmp3),[n,m]);
Gnmm= symfun((sqrt(factorial(n).*factorial(m)).*((nu./(2.*mu)).^((n+m)./2)).*sGnmm1.*sGnmp2.*sGnmp3),[n,m]);
outp= vpa(Gnmp(6,5)) %%% n and m can be taken as any positive integer.
outm= vpa(Gnmm(5,5))
0 commentaires
Réponse acceptée
Walter Roberson
le 14 Juin 2020
It is not possible to get that output in simple numeric form. The result depends upon the unresolved variables l, p and q.
About the best you can do is produce an output under each of the two possible conditions implied by your use of min()
syms n m p q s l up_lt
Q = @(v) sym(v);
mu = Q(1.0051);
nu = Q(0.1015);
eta = Q(0.0922);
k=2;
x1 = 2.*q + l - m;
y1 = 2.*p - n;
up_lt_vals = [x1, y1];
up_lt_cond = [x1 <= y1, y1 <= x1];
n_up_lt = length(up_lt_vals);
outp = zeros(n_up_lt, 1, 'sym');
outm = zeros(n_up_lt, 1, 'sym');
for up_lt_idx = 1 : n_up_lt
assume([n, m, p, q, s, l, up_lt], 'clear')
assumeAlso(p>=0);
assumeAlso(q>=0);
assumeAlso(l>=0);
assumeAlso(s>=0);
assumeAlso(m>=0);
assumeAlso(n>=0);
assumeAlso(up_lt_cond(up_lt_idx));
up_lt = up_lt_vals(up_lt_idx); %%%%%%%%% Upper limit of the sum in sGnmp3
Gnmp1 = (((-1).^(k-l))-1).*nchoosek(k,l).*((eta.*(mu-nu)).^(k-l)).*((mu.*nu./2).^l);
sGnmp1 = symsum(Gnmp1,l,0,k);
Gnmp2 = (1./(factorial(p).*factorial(q))).*nchoosek(p,n-p).*nchoosek(q,m-q);
sGnmp2 = symsum(symsum(Gnmp2,q,0,m),p,0,n);
Gnmp3 = ((2.*mu./nu).^s).*factorial(s).*nchoosek(x1,s) .*nchoosek(y1,s).*hermiteH(x1-s,0).*hermiteH(y1-s, 0);
sGnmp3 = symsum(Gnmp3,s,0,up_lt);
Gnmm1 = (((-1).^(k-l))+1).*nchoosek(k,l).*((eta.*(mu-nu)).^(k-l)).*((mu.*nu./2).^l);
sGnmm1 = symsum(Gnmm1,l,0,k);
Gnmp = symfun((sqrt(factorial(n).*factorial(m)).*((nu./(2.*mu)).^((n+m)./2)).*sGnmp1.*sGnmp2.*sGnmp3),[n,m]);
Gnmm = symfun((sqrt(factorial(n).*factorial(m)).*((nu./(2.*mu)).^((n+m)./2)).*sGnmm1.*sGnmp2.*sGnmp3),[n,m]);
outp(up_lt_idx) = simplify(Gnmp(6,5), 'steps', 5); %%% n and m can be taken as any positive integer.
outm(up_lt_idx) = simplify(Gnmm(5,5), 'steps', 5);
end
disp(up_lt_cond(1));
disp([outp(1); outm(1)]);
disp(up_lt_cond(2));
disp([outp(2); outm(2)]);
but this will not be very different than your existing code with min(). If more information was known about p, q, or l, then perhaps there might be additional simplification.
3 commentaires
Walter Roberson
le 14 Juin 2020
Gnmp3 = ((2.*mu./nu).^s).*factorial(s).*nchoosek(x1,s) .*nchoosek(y1,s).*hermiteH(x1-s,0).*hermiteH(y1-s, 0);
That line uses x1 and y1, which depend upon l, p, and q.
The Gmnp3 is not used within a symsum over l, p, or q, unlike sGnmp2
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Assumptions dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!