ode45 third order ode
28 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
matlab
le 22 Juin 2020
Réponse apportée : Ameer Hamza
le 22 Juin 2020
how to solve
f''' = { [3 * f' * (f'')^2] / [(f')^2 + 1]^(5/2) + 1/f^3 - 1/f^2 + 3} * { [(f')^2 + 1]^(3/2) }
using ode45
with
f(0) = 1.1
f'(0) = 17.1
f''(0) = 144.1
0 commentaires
Réponse acceptée
Ameer Hamza
le 22 Juin 2020
Use ode45(). this ODE can be written as a system of 3 first-order ODEs
odeFun = @(t, y) [y(2);
y(3);
((3*y(2).*y(3).^2)./(y(2).^2 + 1).^(5/2) + 1./y(1).^3 - 1/y(1).^2 + 3).*((y(2).^2 + 1).^(3/2))];
tspan = [0 1];
ic = [1.1; 17.1; 144.1];
[t, y] = ode45(odeFun, tspan, ic);
plot(t, y);
However, it seems that the ODE is unstable, and the solution diverges to infinity. You may check if the equation is written correctly.
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!