ode45 third order ode

28 vues (au cours des 30 derniers jours)
matlab
matlab le 22 Juin 2020
how to solve
f''' = { [3 * f' * (f'')^2] / [(f')^2 + 1]^(5/2) + 1/f^3 - 1/f^2 + 3} * { [(f')^2 + 1]^(3/2) }
using ode45
with
f(0) = 1.1
f'(0) = 17.1
f''(0) = 144.1

Réponse acceptée

Ameer Hamza
Ameer Hamza le 22 Juin 2020
Use ode45(). this ODE can be written as a system of 3 first-order ODEs
odeFun = @(t, y) [y(2);
y(3);
((3*y(2).*y(3).^2)./(y(2).^2 + 1).^(5/2) + 1./y(1).^3 - 1/y(1).^2 + 3).*((y(2).^2 + 1).^(3/2))];
tspan = [0 1];
ic = [1.1; 17.1; 144.1];
[t, y] = ode45(odeFun, tspan, ic);
plot(t, y);
However, it seems that the ODE is unstable, and the solution diverges to infinity. You may check if the equation is written correctly.

Plus de réponses (0)

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by