IFFT of Gaussian-filtered real signal is complex - why?
10 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello everyone,
I've written a script to apply a Gaussian filter to a time series (signal), however I must have done something wrong, as the ifft of the filtered signal is complex, even though the original signal was real.
I know that when the first and last elements of the imaginary part vector of the FFT are equal to zero, the symmetry condition is met, i.e. the result of the IFFT will be real rather than complex. However I'm not sure if I should just manually make them be equal to zero.
Could the problem lie in how I've defined the Gaussian filter, i.e. along the entire frequency range of the FFT, and symmetrical?
Code is below. Many thanks in advance for any suggestions.
Y = fft(y);
% filter parameters
f0 = 2; % Hz
sigma = 0.2 * f0;
% define filter
f = 1:length(Y);
gaussFilter_firstHalf = normpdf (f, f0, sigma);
gaussFilter_firstHalf = gaussFilter_firstHalf ./ max(gaussFilter_firstHalf); % scale it so it goes from 0-1
for i=1:length(Y)
gaussFilter_secondHalf(i) = gaussFilter_firstHalf(length(Y)-i+1);
end
gaussFilter = gaussFilter_firstHalf + gaussFilter_secondHalf;
% apply filter
Y_filtered = Y .* gaussFilter;
y_filtered = ifft (Y_filtered);
0 commentaires
Réponse acceptée
Matt J
le 2 Déc 2012
Modifié(e) : Matt J
le 3 Déc 2012
You need to be more careful about using fftshift in appropriate places. You also need to be more careful about how you set up the frequency axis in Hz. It won't be f=1:length(Y). Remember that with DFTs, your frequency sampling interval is related to your time sampling interval as follows
frequencysampling = 1/N/timesampling
leading to
N=length(Y);
f= ( (0:N-1) -ceil((N-1)/2) )/N/timesampling;
gaussFilter = normpdf(abs(f),2, 0.4);
plot(f,gaussFilter); %Check
Y_filtered = Y .* ifftshift(gaussFilter);
y_filtered = ifft(Y_filtered,'symmetric');
plot(f, fftshift(abs(Y_filtered))); %Check
4 commentaires
Plus de réponses (3)
Image Analyst
le 2 Déc 2012
This is not true: "when the first and last elements of the imaginary part vector of the FFT are equal to zero, the symmetry condition is met". That does not guarantee that the spectrum is Hermitian. It would have to be symmetric about the middle. You might want to check out the chart about 1/3 of the way down this page: http://www.cv.nrao.edu/course/astr534/FourierTransforms.html
If you start with a real time domain signal, you will end up with a Hermitian spectrum (= an even real part and an odd imaginary part). If you then filter it with a symmetric Gaussian, the real part should stay even and the imaginary part should stay odd. So transforming them back should get you a mostly real function with only a very small imaginary part due to spatial quantization.
I can't run your code because I don't have whatever toolbox contains normpdf.
1 commentaire
Vieniava
le 2 Déc 2012
Your Gaussian filter is NOT symmetric in frequency domain. Check this out:
stem(fftshift(gaussFilter))
it supposed to be symmetric with respect to the (length(Y)/2 + 1) sample.
0 commentaires
Voir également
Catégories
En savoir plus sur Filter Analysis dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!