The Eigenvalues of a large matrix don't cross each other when plotted

2 vues (au cours des 30 derniers jours)
AVM
AVM le 25 Sep 2020
Commenté : Ameer Hamza le 26 Sep 2020
I am trying to plot the eigenvalues of a matrix in accending order w.r.to some parameter. The matrix has large dimension. Here various eigenvalues of the matrix is not actually crossing at some points rather it seems to be repeling each other at those points. But it is expected that it should cross over each other at those points. I don't understand why this is happening. Please somebody help me. The matlab code is given below.
om=1.0;
om0=0;
dlt=0.5;
n=50;
I1=eye(n);
I2=eye(2);
matdimension= n-1;
tempvector = 0:1:matdimension;
tempvector = sqrt(tempvector);
tempmatrix = diag(tempvector);
anni= circshift(tempmatrix,-1);
crea = anni';
num=crea*anni;
c=crea+anni;
sigx=[0,1;1,0];
sigz=[1,0; 0,-1];
lm=0:0.01:1.0;
w1 = zeros(size(lm));
w2 = zeros(size(lm));
w3 = zeros(size(lm));
w4 = zeros(size(lm));
w5 = zeros(size(lm));
w6 = zeros(size(lm));
for i = 1:length(lm)
H= om*kron(I2,num) +(dlt./2)* kron(sigz,I1) + lm(i).*(kron(sigx,crea+anni));
l= eig(H);
v= sort(l);
w1(i)=v(1);
w2(i)=v(2);
w3(i)=v(3);
w4(i)=v(4);
w5(i)=v(5);
w6(i)=v(6);
end
plot(lm,w1,'k',lm,w2,'r',lm,w3,'b',lm,w4,'g',lm,w5,'y',lm,w6,'c')

Réponse acceptée

Ameer Hamza
Ameer Hamza le 25 Sep 2020
Modifié(e) : Ameer Hamza le 25 Sep 2020
Yes, this is a very common problem with MATLAB's eig function, and John has created this excellent package to solve this problem: https://www.mathworks.com/matlabcentral/fileexchange/22885-eigenshuffle . This maintains consistency in the order of eigenvalues. Try the following code
om=1.0;
om0=0;
dlt=0.5;
n=50;
I1=eye(n);
I2=eye(2);
matdimension= n-1;
tempvector = 0:1:matdimension;
tempvector = sqrt(tempvector);
tempmatrix = diag(tempvector);
anni= circshift(tempmatrix,-1);
crea = anni';
num=crea*anni;
c=crea+anni;
sigx=[0,1;1,0];
sigz=[1,0; 0,-1];
lm=0:0.01:1.0;
H = zeros(100, 100, length(lm));
for i = 1:length(lm)
H(:,:,i) = om*kron(I2,num) +(dlt./2)* kron(sigz,I1) + lm(i).*(kron(sigx,crea+anni));
end
[~, e] = eigenshuffle(H);
e = flipud(e);
w1 = e(1,:);
w2 = e(2,:);
w3 = e(3,:);
w4 = e(4,:);
w5 = e(5,:);
w6 = e(6,:);
plot(lm,w1,'k',lm,w2,'r',lm,w3,'b',lm,w4,'g',lm,w5,'y',lm,w6,'c')
  2 commentaires
AVM
AVM le 26 Sep 2020
@Ameer : Thanks a lot. This is exactly which I was expecting.
Ameer Hamza
Ameer Hamza le 26 Sep 2020
I am glad to be of help!

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Numerical Integration and Differentiation dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by