Lsqnonlin_Fitting Data

1 vue (au cours des 30 derniers jours)
Fredic
Fredic le 8 Oct 2020
Commenté : Fredic le 11 Oct 2020
Hello Guys!!
I am performing a fitting of different curves using lsqnonlin. My fitting equation is composed of six parameters. When I run my script I obtained one set of parameters for each curve.
It is possible to perform the fitting using only one set of parameters for each curve??
In the attachment my script:
x0 = [10.07 5.89 21.62 0.116 0.493 47.99];
coeff = zeros(6,mm);
LB=[0 0 0 0 0 0];
UB=[inf inf inf 1 0.5 90];
sig_fit_11 = zeros(nn,mm);
sig_fit_22 = zeros(nn,mm);
for i=1:mm
options = optimoptions(@lsqnonlin,'Algorithm','trust-region-reflective');
[x,resnorm,residual,exitflag]=lsqnonlin(@(x)f_const(Lam11(:,i), Lam22(:,i), x) - [sigma11(:,i); sigma22(:,i)],x0,LB,UB,options);
coeff (:,i) = x;
sigma = f_const(Lam11(:,i), Lam22(:,i), x);
sig_fit_11(:,i) = sigma(1:nn);
sig_fit_22(:,i) = sigma((nn+1):end);
end
I look forward to your reply!!!
Thank you very much

Réponses (1)

Alex Sha
Alex Sha le 8 Oct 2020
Hi, if possible, please post out your data of each curve, as well as the fitting equation.
  4 commentaires
Fredic
Fredic le 9 Oct 2020
function [sigOutput]=f_const(Lam11,Lam22,x)
c=x(1);
k1=x(2);
k2=x(3);
kip=x(4);
kop=x(5);
alpha=x(6);
A=2*kop*kip;
B=2*kop*(1-2*kip);
lam3 = 1./(Lam11.*Lam22);
I1=(Lam11.^2+Lam22.^2+lam3.^2);
I4=Lam11.^2.*cosd(alpha).^2+Lam22.^2.*sind(alpha).^2;
In=lam3.^2;
E4=A.*I1+B.*I4+(1-3*A-B).*In-1;
sig1=(c+4.*(A+B.*cosd(alpha).^2).*k1.*E4.*exp(k2.*E4.^2)).*Lam11.^2-(c+4*(1-2*A-B).*k1.*E4.*exp(k2.*E4.^2)).*lam3.^2;
sig2=(c+4.*(A+B.*sind(alpha).^2).*k1.*E4.*exp(k2.*E4.^2)).*Lam22.^2-(c+4*(1-2*A-B).*k1.*E4.*exp(k2.*E4.^2)).*lam3.^2;
sigOutput=[sig1;sig2];
end
Fredic
Fredic le 11 Oct 2020
do you have an idea?

Connectez-vous pour commenter.

Catégories

En savoir plus sur Curve Fitting Toolbox dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by