Handling missing data is a very complicated topic.
There are a number of different approaches that you can use including listwise deletion, substitution models, multiple imputation, yada yada yada. Each approach has its own advantages and disadvantages.
For example, an approach based on substitution (regression substitution, interpolation, what have you) will give you a complete data set to work with, however, this new data set is going to be biased. (As a simple example, supposed that you use a regression substitution model to estimate plausible values for your missing data point. Later on, you fit a regression model to your [complete) data set and report an R^2...)
Alternatively, an approach based on listwise deletion won't [necessarily] run into the same problems with bias, however, you will have issues with loss of statistical power.
I took a quick look at the data set in question. Two observations.
1. You are missing large blocks of data - this is going to cause some real problems for interpolation based techniques
2. Your data doesn't appear to be Missing Completely At Random or even Missing at Random
Personally, I would start with listwise deletion...