How can I modify this code so it gives the value 0 for c. It should only provide ax^2+bx
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
function [coefficients, MSE] = pnnnfit(x, y, order)
coefficients = polyfit(x, y, order)
y_fitted = polyval(coefficients, x)
squaredError = (y - y_fitted) .^ 2
MSE = sum(squaredError)
end
%x=[0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5];
% y=[0 -5.27 -8.10 -8.46 -6.38 -1.84 5.15 14.59 26.48 40.83 57.63];
ans =
4.9069 -13.0140 0.0265
1 commentaire
Walter Roberson
le 4 Déc 2020
If you mean that a^2+b*x should exactly equal y, then that is not the case.
The best degree 2 fit is 61067/12450 * x^2 - 17802227/1369500*x + 10357/136950000
Réponses (1)
Asad (Mehrzad) Khoddam
le 4 Déc 2020
%x=[0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5];
%y=[0 -5.27 -8.10 -8.46 -6.38 -1.84 5.15 14.59 26.48 40.83 57.63];
function [coefficients] = pnnnfit(x, y)
coefficients=[sum(x.^4) sum(x.^3) ; sum(x.^3) sum(x.^2)]\[sum(y.*x.^2) sum(y.*x)]';
% a = coefficients(1)
% b = coefficients(2)
% you need to add more code to find MSE but it is simple
plot(x,y,x,coefficients(1)*x.^2+coefficients(2)*x)
end
2 commentaires
Walter Roberson
le 4 Déc 2020
Odd.. when you could just
[x(:).^2, x(:)]\y(:)
Asad (Mehrzad) Khoddam
le 4 Déc 2020
Modifié(e) : Asad (Mehrzad) Khoddam
le 4 Déc 2020
Yes, you are right. I used the actual mathematical equations for the least squares method. Matlab has a simplified '\' operator for solving equations and the least square method
Voir également
Catégories
En savoir plus sur Language Fundamentals dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!