How can I modify this code so it gives the value 0 for c. It should only provide ax^2+bx

2 vues (au cours des 30 derniers jours)
function [coefficients, MSE] = pnnnfit(x, y, order)
coefficients = polyfit(x, y, order)
y_fitted = polyval(coefficients, x)
squaredError = (y - y_fitted) .^ 2
MSE = sum(squaredError)
end
%x=[0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5];
% y=[0 -5.27 -8.10 -8.46 -6.38 -1.84 5.15 14.59 26.48 40.83 57.63];
ans =
4.9069 -13.0140 0.0265
  1 commentaire
Walter Roberson
Walter Roberson le 4 Déc 2020
If you mean that a^2+b*x should exactly equal y, then that is not the case.
The best degree 2 fit is 61067/12450 * x^2 - 17802227/1369500*x + 10357/136950000

Connectez-vous pour commenter.

Réponses (1)

Asad (Mehrzad) Khoddam
Asad (Mehrzad) Khoddam le 4 Déc 2020
%x=[0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5];
%y=[0 -5.27 -8.10 -8.46 -6.38 -1.84 5.15 14.59 26.48 40.83 57.63];
function [coefficients] = pnnnfit(x, y)
coefficients=[sum(x.^4) sum(x.^3) ; sum(x.^3) sum(x.^2)]\[sum(y.*x.^2) sum(y.*x)]';
% a = coefficients(1)
% b = coefficients(2)
% you need to add more code to find MSE but it is simple
plot(x,y,x,coefficients(1)*x.^2+coefficients(2)*x)
end
  2 commentaires
Asad (Mehrzad) Khoddam
Asad (Mehrzad) Khoddam le 4 Déc 2020
Modifié(e) : Asad (Mehrzad) Khoddam le 4 Déc 2020
Yes, you are right. I used the actual mathematical equations for the least squares method. Matlab has a simplified '\' operator for solving equations and the least square method

Connectez-vous pour commenter.

Catégories

En savoir plus sur Language Fundamentals dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by