Find real positive roots of 9th order polynomial

3 vues (au cours des 30 derniers jours)
T S Singh
T S Singh le 14 Déc 2020
Commenté : T S Singh le 16 Déc 2020
Hi,
I am trying to find the real positive roots of a 9th order polynomial equation using roots . My program is given below
clear all
close all
clc
%%%% Parameters %%%%
gamma=0.0783;
zai=0.025;
fo=0.25;
f1=0.01;
om_data=.01:.001:0.9;
n=length(om_data);
cnt=1;
cnt1=1;
for ii=1:1:n
A=[];
sol=[];
om=om_data(ii);
P=[25*gamma^3 0 -20*gamma^2*om^2 -15*gamma^2*fo +4*gamma*om^2*(om^2+4*zai^2) ...
16*gamma*fo*om^2 3*gamma*(2*f1^2-3*fo^2) -4*fo^2*om^2*(om^2+4*zai^2) ...
4*fo^2*om^2 -fo^3]; % Polynomial Coefficients
sol=roots(P); % Roots of polynomial
A=sol(imag(sol)==0 & sol>=0); % Select real and positive roots
no_A=length(A);
if no_A==1
plot(om,A,'.');
hold on
elseif no_A==3
om_same = om*ones(1,3);
plot(om_same,A,'.')
hold on
elseif no_A==5
om_same2 = om*ones(1,5);
plot(om_same2,A,'.')
hold on
end
end
The plot which I obtained is different from the actual answer. The correct plot is (I. Kovacicetal et. al. Int. J. Non-linear Mech. 43, 2008)
Q.1 Is there any limitation with the roots command or is there any problem with my code.
Q.2 For fo=0.2 and f1=0.1 the plot should look like this
That is, there are some parametric region where we obtain multiple roots. But my program is giving a differen plot.
Any help please
Thank You.
  6 commentaires
Mathieu NOE
Mathieu NOE le 15 Déc 2020
hi
I suppose both options work as soon as this publication is not covered by any NDA or other restrictions
if you prefer , you can send it to : mathieu.noe@hutchinson.com
T S Singh
T S Singh le 15 Déc 2020
@ Mathieu Thanks. Please check your mail

Connectez-vous pour commenter.

Réponses (1)

Matt J
Matt J le 15 Déc 2020
Modifié(e) : Matt J le 15 Déc 2020
The roots of a polynomial become increasingly sensitive to small variations in the polynomial coefficients as the order of the polynomial gets large, and order 9 is a bit high. Are you sure gamma and the other parameters affecting the coefficients are accurately given, to the maximum precision possible, compared to the original paper? In particular, does gamma really only have 3 significant digits?
Also, instead of,
om=om_data(ii);
it would be more accurate to have,
om=0.01+ii*0.001;
  6 commentaires
Matt J
Matt J le 15 Déc 2020
Modifié(e) : Matt J le 15 Déc 2020
My best guess is that the paper only published their parameters (e.g., gamma) to 4 decimal places, whereas more precision is needed to obtain ttheir actual plots. Do you have any way of regenerating the input parameters from first principles? Otherwise, maybe contact the authors.
T S Singh
T S Singh le 16 Déc 2020
As of now I don't have any other ways to generate the parameters.

Connectez-vous pour commenter.

Catégories

En savoir plus sur Polynomials dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by