PID Matlab scripts is not running
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
%Closed loop Algorthim
%Error=Setpoint -Feedback
%Setpoint:5
%Feedback:0,1,2,3,4,5(my assumption)
previous_error=0;
integral=0;
kp=1;
ki=1;
kd=1;
sp=[5,5,5,5,5,5];
fb=[0,1,2,3,4,5];
error=[5,4,3,2,1,0];
dt=[0,1,2,3,4,5]
error=sp-fb
integral=(integral + error) * dt
derivative= (error - previous_error) / dt
output=(er*kp)+(ki*integral)+(kd*derivative)
previous_error= error
plot(output,dt)
0 commentaires
Réponses (1)
Walter Roberson
le 31 Déc 2020
Change all * to .* and all / to ./
1 commentaire
Walter Roberson
le 31 Déc 2020
format long g
%Closed loop Algorthim
%Error=Setpoint -Feedback
%Setpoint:5
%Feedback:0,1,2,3,4,5(my assumption)
previous_error=0;
integral=0;
kp=1;
ki=1;
kd=1;
sp=[5,5,5,5,5,5];
fb=[0,1,2,3,4,5];
error=[5,4,3,2,1,0];
dt=[0,1,2,3,4,5]
error=sp-fb
integral=(integral + error) .* dt
derivative= (error - previous_error) ./ (dt+(dt==0)/5)
output=(error.*kp)+(ki.*integral)+(kd.*derivative)
previous_error= error
plot(dt,output)
The (dt+(dt==0)/5) clause is effectively: dt if dt is non-zero, 1/5 if dt is zero. It is there to prevent division by 0, which would give infinity. The 1/5 was chosen arbitrarily to not skew the plot too high but stil emphasize that the value is much higher than the others.
Voir également
Catégories
En savoir plus sur PID Controller Tuning dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
