How can I create a 2D contour Plot from X,Y,Z table?

3 vues (au cours des 30 derniers jours)
Tin Truong Chanh
Tin Truong Chanh le 18 Jan 2021
I am trying to plot the 2D contour from the equation. I have tried my code. However, It does not work. I give my code below. Thank you so much!.
num=50;
Lpmax=700e-6;
Lpmin=20e-6;
Lr=2.77e-3;
Cr=2.5e-9;
f=1/(2*pi*sqrt(Lr*Cr*0.5));
w=2*pi*f;
T=1/f;
Tdead=T*0.011;
Lp_x11=linspace(Lpmin,Lpmax,num);
Vs=linspace(140,340,num);
Vo=180;
Re_x11=200;
theta=0;
for i=1:num
% solve the D
syms D11
X=solve(sin(D11*pi)/(2*(1-D11))-Vo/Vs(i));
D_ch=X;
%
theta_dch=(2*pi*Tdead)/T;
A2=(1./(Re_x11.*(pi.^2).*(1-D_ch))).*2.*w.*Lp_x11(i).*sin(pi.*D_ch).*sin(pi.*(1-D_ch));
Qlr1=(2.*Vs(i).*sin(pi.*D_ch)./(Re_x11.*pi.*(1-D_ch).*w)).*(sin(-pi.*D_ch-theta_dch)-sin(-pi.*D_ch));
Qlr2=(2.*Vs(i).*sin(pi.*D_ch)./(Re_x11.*pi.*(1-D_ch).*w)).*(sin(pi*D_ch-theta_dch)-sin(pi.*D_ch));
Qlp_S1=-(1./w).*(Vs(i).*theta_dch./(w.*Lp_x11(i))).*(A2./(1-D_ch)-pi.*D_ch+theta_dch./2);
Qlp_S2=(1./w).*(D_ch.*Vs(i).*theta_dch)./(w.*Lp_x11(i).*(1-D_ch)).*(A2./D_ch+pi.*(1-D_ch)-theta_dch./2);
Qs1(i)=Qlp_S1+Qlr1;
Qs2(i)=Qlr2+Qlp_S2;
end
xv = linspace(min(Lp_x11), max(Lp_x11), 1000);
zv = linspace (min (Vs), max (Vs), 1000);
[X,Z] = meshgrid(xv, zv);
P = griddata(Lp_x11, Vs, Qs1, X, Z);
figure
scatter3(x, z, p, '.')
grid on
figure
meshc (X, Z, P)
grid on
figure
contourf(X, Z, P)
grid on

Réponse acceptée

Cris LaPierre
Cris LaPierre le 18 Jan 2021
Modifié(e) : Cris LaPierre le 18 Jan 2021
The first issue is that one of your inputs to griddata is symbolic. It must be numeric. Use the double function to convert Qs1 to doubles.
P = griddata(Lp_x11, Vs, double(Qs1), X, Z);
Next, your scatter3 function call does not use variables that exist. Variables are case sensitive. Use X, Z and P. In addition, the inputs to scatter3 must be vectors, not arrays. Use a colon to turn your arrays into vectors.
scatter3(X(:), Z(:), P(:), '.')
Surface plots (meshes, contours) will not work with the data as you currently have it since the data is more of a line than a surface. You have gridded the data, but most of the values are NaN. Scatter3 may be the best choice.
You could also try just plotting in 3D.
plot3(Lp_x11, Vs, double(Qs1))
Upon closer inspection, you'll see that you are ony solving you equation along the diagonal (Vs(i),Lp_x11(i)). This is why your results of all NaN. You are essentially trying to determine an entire surface from a single line. Instead, you want to user your loop to pick one value (say Vs(i)), and solve for all values of Lp_x11. If you capture the results correctly, Qs1 and Qs2 will be num x num arrays.
At that point, you want to use interp2, not gridded data, to increase the resolution of your data.
Here's your code modified.
num=50;
Lpmax=700e-6;
Lpmin=20e-6;
Lr=2.77e-3;
Cr=2.5e-9;
f=1/(2*pi*sqrt(Lr*Cr*0.5));
w=2*pi*f;
T=1/f;
Tdead=T*0.011;
Lp_x11=linspace(Lpmin,Lpmax,num);
Vs=linspace(140,340,num);
Vo=180;
Re_x11=200;
theta=0;
% solve the D
syms D11
theta_dch=(2*pi*Tdead)/T;
for r=1:length(Vs)
X=vpasolve(sin(D11*pi)/(2*(1-D11))-Vo/Vs(r));
D_ch=X;
A2=(1./(Re_x11.*(pi.^2).*(1-D_ch))).*2.*w.*Lp_x11.*sin(pi.*D_ch).*sin(pi.*(1-D_ch));
Qlr1=(2.*Vs(r).*sin(pi.*D_ch)./(Re_x11.*pi.*(1-D_ch).*w)).*(sin(-pi.*D_ch-theta_dch)-sin(-pi.*D_ch));
Qlr2=(2.*Vs(r).*sin(pi.*D_ch)./(Re_x11.*pi.*(1-D_ch).*w)).*(sin(pi*D_ch-theta_dch)-sin(pi.*D_ch));
Qlp_S1=-(1./w).*(Vs(r).*theta_dch./(w.*Lp_x11)).*(A2./(1-D_ch)-pi.*D_ch+theta_dch./2);
Qlp_S2=(1./w).*(D_ch.*Vs(r).*theta_dch)./(w.*Lp_x11.*(1-D_ch)).*(A2./D_ch+pi.*(1-D_ch)-theta_dch./2);
% Vs will be the y axis, which corresponds to the rows of the matrix
% Capture the entire row of data using the indexing below.
Qs1(r,:)=Qlp_S1+Qlr1;
Qs2(r,:)=Qlr2+Qlp_S2;
end
xv = linspace(min(Lp_x11), max(Lp_x11), 1000);
zv = linspace (min (Vs), max (Vs), 1000);
[X,Z] = meshgrid(xv, zv);
% P = griddata(Lp_x11, Vs, double(Qs1), X, Z);
P = interp2(Lp_x11, Vs, double(Qs1), X, Z);
figure
scatter3(X(:), Z(:), P(:), '.')
grid on
figure
meshc(X, Z, P)
grid on
figure
contourf(X, Z, P)
grid on
  1 commentaire
Tin Truong Chanh
Tin Truong Chanh le 19 Jan 2021
Thank you so much for your help. Your method works well. my problem is solved.

Connectez-vous pour commenter.

Plus de réponses (1)

Walter Roberson
Walter Roberson le 18 Jan 2021
num=50;
Lpmax=700e-6;
Lpmin=20e-6;
Lr=2.77e-3;
Cr=2.5e-9;
f=1/(2*pi*sqrt(Lr*Cr*0.5));
w=2*pi*f;
T=1/f;
Tdead=T*0.011;
Lp_x11=linspace(Lpmin,Lpmax,num);
Vs=linspace(140,340,num);
Vo=180;
Re_x11=200;
theta=0;
Qs1 = zeros(1,num);
Qs2 = zeros(1,num);
for i=1:num
% solve the D
syms D11
X=vpasolve(sin(D11*pi)/(2*(1-D11))-Vo/Vs(i));
D_ch=double(X);
%
theta_dch=(2*pi*Tdead)/T;
A2=(1./(Re_x11.*(pi.^2).*(1-D_ch))).*2.*w.*Lp_x11(i).*sin(pi.*D_ch).*sin(pi.*(1-D_ch));
Qlr1=(2.*Vs(i).*sin(pi.*D_ch)./(Re_x11.*pi.*(1-D_ch).*w)).*(sin(-pi.*D_ch-theta_dch)-sin(-pi.*D_ch));
Qlr2=(2.*Vs(i).*sin(pi.*D_ch)./(Re_x11.*pi.*(1-D_ch).*w)).*(sin(pi*D_ch-theta_dch)-sin(pi.*D_ch));
Qlp_S1=-(1./w).*(Vs(i).*theta_dch./(w.*Lp_x11(i))).*(A2./(1-D_ch)-pi.*D_ch+theta_dch./2);
Qlp_S2=(1./w).*(D_ch.*Vs(i).*theta_dch)./(w.*Lp_x11(i).*(1-D_ch)).*(A2./D_ch+pi.*(1-D_ch)-theta_dch./2);
Qs1(i)=Qlp_S1+Qlr1;
Qs2(i)=Qlr2+Qlp_S2;
end
nnz(~isfinite(Lp_x11)), nnz(~isfinite(Vs)), nnz(~isfinite(Qs1))
ans = 0
ans = 0
ans = 0
xv = linspace(min(Lp_x11), max(Lp_x11), 1000);
zv = linspace(min(Vs), max(Vs), 1000);
[X,Z] = ndgrid(xv, zv);
F = scatteredInterpolant(Lp_x11(:), Vs(:), Qs1(:), 'linear', 'linear');
P = F(X, Z);
scatter(X(:), Z(:), 10)
figure
scatter3(X(:), Z(:), P(:), '.')
grid on
figure
meshc(X, Z, P)
grid on
figure
contourf(X, Z, P, linspace(-3e-6,4e-6,8))
grid on
nnz(isnan(P))
ans = 999079
surf(X, Z, P, 'edgecolor', 'none')
  2 commentaires
Walter Roberson
Walter Roberson le 18 Jan 2021
Okay, so what is happening is that when you calculate Qs1, you index Lp_x11(i) and Vs(i) . Both of those were created by linspace() with the same number of points, so they are in relationship, Vs(i) = A*Lp_x11(i) + B for some constants A and B.
Therefore, Qs1 is only being calculated along a line, and when you go to interpolate that line into 3 space, you do not have any information to interpolate off-axes, so it all interpolates as nan.
Tin Truong Chanh
Tin Truong Chanh le 19 Jan 2021
Thank you so much for your help!

Connectez-vous pour commenter.

Catégories

En savoir plus sur Particle & Nuclear Physics dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by