solution of ordinary differential equations when there is a f(t)
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
HONG CHENG
le 5 Mar 2021
Commenté : Walter Roberson
le 5 Mar 2021
I do hope anyone can give me some idea to solve these two problems shown in two boxs
I can calculte the the solution of x(t) in the following equation
dx(t)/dt = x(t)+(x(t))^3
I can use
dsolve('Dx=1*x+1*x^3')
and I got the answer is
ans =
0
(-exp(2*C8 + 2*t)/(exp(2*C8 + 2*t) - 1))^(1/2)
1i
-1i
I don't know what's C8 and should I just take the (-exp(2*C8 + 2*t)/(exp(2*C8 + 2*t) - 1))^(1/2) as the correct solution?
More important, I don't know how to calculte the solution of x(t) when there is a f(t)
dx(t)/dt = x(t)+(x(t))^3 + f(t)
, where
f(t) = sin(100*t)
1 commentaire
Walter Roberson
le 5 Mar 2021
I cannot read some of the details of f(t) for the second equation.
Maple and Mathematica both say that there is no closed form solution for the first equation, and no closed form solution for diff(x(t), t) == x(t) + cos(t)^8 + x(t)^3 + 2*sin(5*t)*exp(t) + 1 (which is the best I could estimate for the second equation.)
Réponse acceptée
Walter Roberson
le 5 Mar 2021
I don't know what's C8 and should I just take the (-exp(2*C8 + 2*t)/(exp(2*C8 + 2*t) - 1))^(1/2) as the correct solution?
Yes? No?
C8 represents a constant needed to represent a boundary condition.
syms x(t) x0
dx = diff(x)
eqn = dx == x(t)+(x(t))^3
X = simplify(dsolve(eqn, x(0)==x0)) %boundary condition on x(0)
subs(X,t,0) %crosscheck
Oh dear, that loses the sign. What happens if x0 was negative?
Xneg = dsolve(eqn, x(0)==-2)
Xpos = simplify(dsolve(eqn, x(0)==2))
fplot(Xpos, [0 1])
The larger the boundary condition, the smaller the distance until the singularity. For small enough boundary conditions, the distance to the singularity is approximately -log(sqrt(x0)) -- for boundary conditions of the form 1/N for large enough N, that would be very close to log(sqrt(N))
5 commentaires
Walter Roberson
le 5 Mar 2021
No, odeFunction() and dsolve() are completely useless for difference equations.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Equation Solving dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!