Generating a particular sequnce of numbers

2 vues (au cours des 30 derniers jours)
Adi gahlawat
Adi gahlawat le 27 Juil 2013
Hi,
given a variable natural number d, I'm trying to generate a sequence of the form:
[1 2 1 3 2 1 4 3 2 1.......d d-1 d-2......3 2 1].
I don't want to use for loop for this process, does anyone know a better (faster) method. I tried the colon operator without any success.
Thank you.
Adi

Réponse acceptée

Azzi Abdelmalek
Azzi Abdelmalek le 27 Juil 2013
Modifié(e) : Azzi Abdelmalek le 27 Juil 2013
d=4
cell2mat(arrayfun(@(x) x:-1:1,1:d,'un',0))
  7 commentaires
Youssef  Khmou
Youssef Khmou le 27 Juil 2013
ok thank you for the explanation .
Jan
Jan le 28 Juil 2013
Azzi's for loop approach is faster.

Connectez-vous pour commenter.

Plus de réponses (6)

Roger Stafford
Roger Stafford le 27 Juil 2013
Here's another method to try:
N = d*(d+1)/2;
A = zeros(1,N);
n = 1:d;
A((n.^2-n+2)/2) = n;
A = cumsum(A)-(1:N)+1;
  1 commentaire
Adi gahlawat
Adi gahlawat le 27 Juil 2013
Modifié(e) : Adi gahlawat le 27 Juil 2013
Hi Roger,
your method is excellent. It's about 2 times faster than my for loop based code. Much obliged.
Adi

Connectez-vous pour commenter.


Azzi Abdelmalek
Azzi Abdelmalek le 28 Juil 2013
Modifié(e) : Azzi Abdelmalek le 28 Juil 2013
Edit
This is twice faster then Stafford's answer
A4=zeros(1,d*(d+1)/2); % Pre-allocate
c=0;
for k=1:d
A4(c+1:c+k)=k:-1:1;
c=c+k;
end
  1 commentaire
Jan
Jan le 28 Juil 2013
Modifié(e) : Jan le 28 Juil 2013
Yes, this is exactly the kind of simplicity, which runs fast. While the one-liners with anonymous functions processed by cellfun or arrayfun look sophisticated, such basic loops hit the point. +1
I'd replace sum(1:d) by: d*(d+1)/2 . Anbd you can omit idx.

Connectez-vous pour commenter.


Richard Brown
Richard Brown le 29 Juil 2013
Even faster:
k = 1;
n = d*(d+1)/2;
out = zeros(n, 1);
for i = 1:d
for j = i:-1:1
out(k) = j;
k = k + 1;
end
end
  7 commentaires
Jan
Jan le 29 Juil 2013
Modifié(e) : Jan le 29 Juil 2013
Under R2011b I get for d=1000 and 500 repetitions:
Elapsed time is 3.466296 seconds. Azzi's loop
Elapsed time is 3.765340 seconds. Richard's double loop
Elapsed time is 1.897343 seconds. C-Mex (see my answer)
Richard Brown
Richard Brown le 29 Juil 2013
Modifié(e) : Richard Brown le 29 Juil 2013
I checked again, and I agree with Azzi. My method was running faster because of another case I had in between his and mine. The JIT was doing some kind of unanticipated optimisation between cases.
I get similar orders of magnitude results to Azzi for R2012a if I remove that case, and if I run in R2013a (Linux), his method is twice as fast.
Shame, I like it when JIT brings performance of completely naive loops up to vectorised speed :)

Connectez-vous pour commenter.


Jan
Jan le 29 Juil 2013
An finally the C-Mex:
#include "mex.h"
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray*prhs[]) {
mwSize d, i, j;
double *r;
d = (mwSize) mxGetScalar(prhs[0]);
plhs[0] = mxCreateDoubleMatrix(1, d * (d + 1) / 2, mxREAL);
r = mxGetPr(plhs[0]);
for (i = 1; i <= d; i++) {
for (j = i; j != 0; *r++ = j--) ;
}
}
And if your number d can be limited to 65535, the times shrink from 1.9 to 0.34 seconds:
#include "mex.h"
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray*prhs[]) {
uint16_T d, i, j, *r;
d = (uint16_T) mxGetScalar(prhs[0]);
plhs[0] = mxCreateNumericMatrix(1, d * (d + 1) / 2, mxUINT16_CLASS, mxREAL);
r = (uint16_T *) mxGetData(plhs[0]);
for (i = 1; i <= d; i++) {
for (j = i; j != 0; *r++ = j--) ;
}
}
For UINT32 0.89 seconds are required.
  1 commentaire
Richard Brown
Richard Brown le 29 Juil 2013
Nice. I imagine d would be limited to less than 65535, that's a pretty huge vector otherwise

Connectez-vous pour commenter.


Richard Brown
Richard Brown le 29 Juil 2013
Modifié(e) : Richard Brown le 29 Juil 2013
Also comparable, but not (quite) faster
n = 1:(d*(d+1)/2);
a = ceil(0.5*(-1 + sqrt(1 + 8*n)));
out = a.*(a + 1)/2 - n + 1;
  3 commentaires
Jan
Jan le 29 Juil 2013
@Richard: How did you find this formula?
Richard Brown
Richard Brown le 29 Juil 2013
If you look at the sequence, and add 0, 1, 2, 3, 4 ... you get
n: 1 2 3 4 5 6 7 8 9 10
1 3 3 6 6 6 10 10 10 10
Note that these are the triangular numbers, and that the triangular numbers 1, 3, 6, 10 appear in their corresponding positions, The a-th triangular number is given by
n = a (a + 1) / 2
So if you solve this quadratic for a where n is a triangular number, you get the index of the triangular number. If you do this for a value of n in between two triangular numbers, you can round this up, and invert the formula to get the nearest triangular number above (which is what the sequence is). Finally, you just subtract the sequence 0, 1, 2, ... to recover the original one.

Connectez-vous pour commenter.


Andrei Bobrov
Andrei Bobrov le 27 Juil 2013
Modifié(e) : Andrei Bobrov le 30 Juil 2013
out = nonzeros(triu(toeplitz(1:d)));
or
out = bsxfun(@minus,1:d,(0:d-1)');
out = out(out>0);
or
z = 1:d;
z2 = cumsum(z);
z1 = z2 - z + 1;
for jj = d:-1:1
out(z1(jj):z2(jj)) = jj:-1:1;
end
or
out = ones(d*(d+1)/2,1);
ii = cumsum(d:-1:1) - (d:-1:1) + 1;
out(ii(2:end)) = 1-d : -1;
out = flipud(cumsum(out));

Catégories

En savoir plus sur Performance and Memory dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by