Generating a particular sequnce of numbers
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi,
given a variable natural number d, I'm trying to generate a sequence of the form:
[1 2 1 3 2 1 4 3 2 1.......d d-1 d-2......3 2 1].
I don't want to use for loop for this process, does anyone know a better (faster) method. I tried the colon operator without any success.
Thank you.
Adi
0 commentaires
Réponse acceptée
Azzi Abdelmalek
le 27 Juil 2013
Modifié(e) : Azzi Abdelmalek
le 27 Juil 2013
d=4
cell2mat(arrayfun(@(x) x:-1:1,1:d,'un',0))
7 commentaires
Plus de réponses (6)
Roger Stafford
le 27 Juil 2013
Here's another method to try:
N = d*(d+1)/2;
A = zeros(1,N);
n = 1:d;
A((n.^2-n+2)/2) = n;
A = cumsum(A)-(1:N)+1;
1 commentaire
Azzi Abdelmalek
le 28 Juil 2013
Modifié(e) : Azzi Abdelmalek
le 28 Juil 2013
Edit
This is twice faster then Stafford's answer
A4=zeros(1,d*(d+1)/2); % Pre-allocate
c=0;
for k=1:d
A4(c+1:c+k)=k:-1:1;
c=c+k;
end
1 commentaire
Jan
le 28 Juil 2013
Modifié(e) : Jan
le 28 Juil 2013
Yes, this is exactly the kind of simplicity, which runs fast. While the one-liners with anonymous functions processed by cellfun or arrayfun look sophisticated, such basic loops hit the point. +1
I'd replace sum(1:d) by: d*(d+1)/2 . Anbd you can omit idx.
Richard Brown
le 29 Juil 2013
Even faster:
k = 1;
n = d*(d+1)/2;
out = zeros(n, 1);
for i = 1:d
for j = i:-1:1
out(k) = j;
k = k + 1;
end
end
7 commentaires
Richard Brown
le 29 Juil 2013
Modifié(e) : Richard Brown
le 29 Juil 2013
I checked again, and I agree with Azzi. My method was running faster because of another case I had in between his and mine. The JIT was doing some kind of unanticipated optimisation between cases.
I get similar orders of magnitude results to Azzi for R2012a if I remove that case, and if I run in R2013a (Linux), his method is twice as fast.
Shame, I like it when JIT brings performance of completely naive loops up to vectorised speed :)
Jan
le 29 Juil 2013
An finally the C-Mex:
#include "mex.h"
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray*prhs[]) {
mwSize d, i, j;
double *r;
d = (mwSize) mxGetScalar(prhs[0]);
plhs[0] = mxCreateDoubleMatrix(1, d * (d + 1) / 2, mxREAL);
r = mxGetPr(plhs[0]);
for (i = 1; i <= d; i++) {
for (j = i; j != 0; *r++ = j--) ;
}
}
And if your number d can be limited to 65535, the times shrink from 1.9 to 0.34 seconds:
#include "mex.h"
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray*prhs[]) {
uint16_T d, i, j, *r;
d = (uint16_T) mxGetScalar(prhs[0]);
plhs[0] = mxCreateNumericMatrix(1, d * (d + 1) / 2, mxUINT16_CLASS, mxREAL);
r = (uint16_T *) mxGetData(plhs[0]);
for (i = 1; i <= d; i++) {
for (j = i; j != 0; *r++ = j--) ;
}
}
For UINT32 0.89 seconds are required.
1 commentaire
Richard Brown
le 29 Juil 2013
Nice. I imagine d would be limited to less than 65535, that's a pretty huge vector otherwise
Richard Brown
le 29 Juil 2013
Modifié(e) : Richard Brown
le 29 Juil 2013
Also comparable, but not (quite) faster
n = 1:(d*(d+1)/2);
a = ceil(0.5*(-1 + sqrt(1 + 8*n)));
out = a.*(a + 1)/2 - n + 1;
3 commentaires
Richard Brown
le 29 Juil 2013
If you look at the sequence, and add 0, 1, 2, 3, 4 ... you get
n: 1 2 3 4 5 6 7 8 9 10
1 3 3 6 6 6 10 10 10 10
Note that these are the triangular numbers, and that the triangular numbers 1, 3, 6, 10 appear in their corresponding positions, The a-th triangular number is given by
n = a (a + 1) / 2
So if you solve this quadratic for a where n is a triangular number, you get the index of the triangular number. If you do this for a value of n in between two triangular numbers, you can round this up, and invert the formula to get the nearest triangular number above (which is what the sequence is). Finally, you just subtract the sequence 0, 1, 2, ... to recover the original one.
Andrei Bobrov
le 27 Juil 2013
Modifié(e) : Andrei Bobrov
le 30 Juil 2013
out = nonzeros(triu(toeplitz(1:d)));
or
out = bsxfun(@minus,1:d,(0:d-1)');
out = out(out>0);
or
z = 1:d;
z2 = cumsum(z);
z1 = z2 - z + 1;
for jj = d:-1:1
out(z1(jj):z2(jj)) = jj:-1:1;
end
or
out = ones(d*(d+1)/2,1);
ii = cumsum(d:-1:1) - (d:-1:1) + 1;
out(ii(2:end)) = 1-d : -1;
out = flipud(cumsum(out));
0 commentaires
Voir également
Catégories
En savoir plus sur Performance and Memory dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!