Area between two curves without intersection

3 vues (au cours des 30 derniers jours)
Crocola Cool
Crocola Cool le 31 Mai 2021
Modifié(e) : Paul le 1 Juin 2021
Hi everyone.
I would like to calculate the area between two curves (see attachment).
I have used the trapz and polyarea function but these do not work because the curves are superimposed on each other without intersection.
Could someone please help me?
x=[0,-1.66128688049154,-3.71843384492024,-6.03903044153544,-8.52179344691878,-11.0684783490837,-13.5546470968919,-15.8324222826000,-17.7183932651871,-19.0241469744085,-19.5928500159198,-19.2715861063891,-18.0007426019886,-15.8645181604802,-13.1050363442789,-10.1023488165208,-7.36091774112053,-5.20617947547990,-3.73171179000825,-2.80200973068434,-2.17303027950468,-1.64687923319577,-1.14657359693582,-0.683525804975150,-0.261378364022391,0.167766706401400,0.646305657504070,1.13828938838504,1.49690490570653,1.50928713174259,0.991312332299208];
y=[0,3.80978510632932,8.62533289690098,13.7146367945814,18.4791657883180,22.5818350036559,26.0354921546852,29.1006123032565,31.9144606689929,33.8206797037834,33.4764658683987,29.5025727265991,21.5010392613040,10.9350767496541,13.3409505060801,18.4784450622125,22.0669438223010,22.8065275890501,20.8225751873008,17.4709163499800,14.5397350670517,13.2179835701845,13.4862976982229,14.3068759442281,14.3461752980756,12.9833980247855,10.3519556168192,7.26333666757206,4.38583660003191,2.05034193641872,0.472418853310666];

Réponses (2)

darova
darova le 31 Mai 2021
Make sure curves have the same start and end
xx = linspace(x1(1),x1(end),100); % new mesh
y11 = interp1(x1,y1,xx); % interpolate curve1
y22 = interp1(x2,y2,xx); % interpolate curve2
A = trapz(xx,abs(y22-y11)); % calculate positive area
  2 commentaires
Torsten
Torsten le 31 Mai 2021
x and y are not two different curves, but one curve given in a (x,y) representation (like e.g. (x,y) = (cos(t),sin(t)) for a circle)
Crocola Cool
Crocola Cool le 31 Mai 2021
#Darova
Thanks for your feedback but it doesn't work with your proposal. You should not separate the x and y data. this said, (x,y).
#code
x=[0,-1.66128688049154,-3.71843384492024,-6.03903044153544,-8.52179344691878,-11.0684783490837,-13.5546470968919,-15.8324222826000,-17.7183932651871,-19.0241469744085,-19.5928500159198,-19.2715861063891,-18.0007426019886,-15.8645181604802,-13.1050363442789,-10.1023488165208,-7.36091774112053,-5.20617947547990,-3.73171179000825,-2.80200973068434,-2.17303027950468,-1.64687923319577,-1.14657359693582,-0.683525804975150,-0.261378364022391,0.167766706401400,0.646305657504070,1.13828938838504,1.49690490570653,1.50928713174259,0.991312332299208];
y=[0,3.80978510632932,8.62533289690098,13.7146367945814,18.4791657883180,22.5818350036559,26.0354921546852,29.1006123032565,31.9144606689929,33.8206797037834,33.4764658683987,29.5025727265991,21.5010392613040,10.9350767496541,13.3409505060801,18.4784450622125,22.0669438223010,22.8065275890501,20.8225751873008,17.4709163499800,14.5397350670517,13.2179835701845,13.4862976982229,14.3068759442281,14.3461752980756,12.9833980247855,10.3519556168192,7.26333666757206,4.38583660003191,2.05034193641872,0.472418853310666];
time=[10,39,69,99,129,158,188,218,248,277,307,337,367,397,426,456,486,516,545,575,605,635,665,694,724,754,784,813,843,873,903];
figure(1)
plot(x,y,'-x');
tq=min(time):1:max(time);
interp_x = interp1(time,x,tq);
interp_y= interp1(time,y,tq);
figure(2)
plot(interp_x,interp_y,'-O')
A=trapz(tq,abs(interp_y-interp_x))

Connectez-vous pour commenter.


Paul
Paul le 31 Mai 2021
I think this is what you're looking for:
x=[0,-1.66128688049154,-3.71843384492024,-6.03903044153544,-8.52179344691878,-11.0684783490837,-13.5546470968919,-15.8324222826000,-17.7183932651871,-19.0241469744085,-19.5928500159198,-19.2715861063891,-18.0007426019886,-15.8645181604802,-13.1050363442789,-10.1023488165208,-7.36091774112053,-5.20617947547990,-3.73171179000825,-2.80200973068434,-2.17303027950468,-1.64687923319577,-1.14657359693582,-0.683525804975150,-0.261378364022391,0.167766706401400,0.646305657504070,1.13828938838504,1.49690490570653,1.50928713174259,0.991312332299208];
y=[0,3.80978510632932,8.62533289690098,13.7146367945814,18.4791657883180,22.5818350036559,26.0354921546852,29.1006123032565,31.9144606689929,33.8206797037834,33.4764658683987,29.5025727265991,21.5010392613040,10.9350767496541,13.3409505060801,18.4784450622125,22.0669438223010,22.8065275890501,20.8225751873008,17.4709163499800,14.5397350670517,13.2179835701845,13.4862976982229,14.3068759442281,14.3461752980756,12.9833980247855,10.3519556168192,7.26333666757206,4.38583660003191,2.05034193641872,0.472418853310666];
plot(x,y,'-+')
p=polyshape(x,y);
Warning: Polyshape has duplicate vertices, intersections, or other inconsistencies that may produce inaccurate or unexpected results. Input data has been modified to create a well-defined polyshape.
plot(p)
p.area
ans = 202.0491
  8 commentaires
Torsten
Torsten le 1 Juin 2021
I'd estimate the length of the big region as 10 and its height as 4, and 10x4 = 40. So no, the area of this example will be much smaller than the area for the first one.
Paul
Paul le 1 Juin 2021
Modifié(e) : Paul le 1 Juin 2021
Plotting both shows that area in example 2 is much smaller than in example 1.
x1=[0,-1.66128688049154,-3.71843384492024,-6.03903044153544,-8.52179344691878,-11.0684783490837,-13.5546470968919,-15.8324222826000,-17.7183932651871,-19.0241469744085,-19.5928500159198,-19.2715861063891,-18.0007426019886,-15.8645181604802,-13.1050363442789,-10.1023488165208,-7.36091774112053,-5.20617947547990,-3.73171179000825,-2.80200973068434,-2.17303027950468,-1.64687923319577,-1.14657359693582,-0.683525804975150,-0.261378364022391,0.167766706401400,0.646305657504070,1.13828938838504,1.49690490570653,1.50928713174259,0.991312332299208];
y1=[0,3.80978510632932,8.62533289690098,13.7146367945814,18.4791657883180,22.5818350036559,26.0354921546852,29.1006123032565,31.9144606689929,33.8206797037834,33.4764658683987,29.5025727265991,21.5010392613040,10.9350767496541,13.3409505060801,18.4784450622125,22.0669438223010,22.8065275890501,20.8225751873008,17.4709163499800,14.5397350670517,13.2179835701845,13.4862976982229,14.3068759442281,14.3461752980756,12.9833980247855,10.3519556168192,7.26333666757206,4.38583660003191,2.05034193641872,0.472418853310666];
x2=[0,-1.58143962981297,-3.03392588365747,-4.31293028513336,-5.43316939640765,-6.43266612032772,-7.34751230187266,-8.19610716571275,-8.97053149511526,-9.63779510279898,-10.1519335567333,-10.4585616901778,-10.5342395749024,-10.3758946306706,-9.98217498098106,-9.34944176705073,-8.47251867761138,-7.35956551245431,-6.05095668830785,-4.62502866942295,-3.18355609435549,-1.82611854945020,-0.611557284260889,0.477054737792964,1.47779860348098,2.40953293828952,3.22796956291444,3.81329910953911,4.00379047888411,3.66637669160807,2.77294873115999,1.43501593689118];
y2=[0,-0.0914589891686976,-0.169258183169858,-0.137641932843007,0.115356308463203,0.650321396134900,1.44445426860180,2.40398635583359,3.39379566406802,4.25865376154095,4.84684849930363,5.03502448735570,4.83627564548227,4.37126677838120,3.80309691225722,3.29016826646019,2.94696153078223,2.83659552454877,2.98508831160315,3.38247203682421,3.96326780273134,4.58673760893439,5.02975831885881,5.09870485313676,4.70518969374756,3.90891301840727,2.89444462683932,1.89004771352925,1.07492003950258,0.526156770959942,0.222079396840722,0.0776605885521645];
plot(x1,y1,'-x',x2,y2,'-o'),grid

Connectez-vous pour commenter.

Catégories

En savoir plus sur Elementary Polygons dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by