K-mean for Wine data set

6 vues (au cours des 30 derniers jours)
Ganesh
Ganesh le 27 Août 2013
Hi,
I performed a K-mean algorithm command on the wine data set from UCI respiratory. This dataset contains chemical analysis of 178 wines, derived from three different cultivars. Wine type is based on 13 continuous features.
Here's the command load 'wine_data.txt';
[IDX,C,sumd,D] = kmeans(wine_data,3,... 'start','sample',... 'Replicates',100,... 'maxiter',1000, 'display','final');
The final Best total sum of distances is 2.37069e+06. This result is way far from the reported K-means solution from the literature, which is aournd 18,061. Is the K-mean solution of Matlab stuck in local minima? Please advice. Thanks.
  1 commentaire
the cyclist
the cyclist le 27 Août 2013
For anyone who is interested in helping out on this one, the data set is here: http://archive.ics.uci.edu/ml/datasets/Wine

Connectez-vous pour commenter.

Réponses (4)

Shashank Prasanna
Shashank Prasanna le 27 Août 2013
Ganesh, what distance metric does the 'literature' use?
The kmeans default is 'sqEuclidean'. You have to make sure you are comparing the same metric. Try changing it to cityblock or any of the other options:

Ganesh
Ganesh le 27 Août 2013
Thanks for the reply Shashank The literature used 'sqEuclidean' and so did I.
  1 commentaire
tryhard
tryhard le 29 Août 2013
Could you post a link to the relevant article. I get the same result you do. It seems like they might have performed pre-processing on the data of some sort.

Connectez-vous pour commenter.


gheorghe gardu
gheorghe gardu le 1 Nov 2015
I would like to ask if you could post the Matlab code that you have used ? I would like to thank you in advance.

Paul Munro
Paul Munro le 21 Fév 2023
The large distance sum you report makes me think that you did not rescale the data. Variable 13 is in the thousands and will overwhelm the effect of the other variables. You will probably get better results if you rescale the variables separately (Z scoring for example).

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by