Derivative of a function in a particular point

6 vues (au cours des 30 derniers jours)
george veropoulos
george veropoulos le 16 Juil 2021
Hi
I have an external function y= function fa(x)
y=sin(x./pi)
end
i want in the main program to find the derivative of fa in numerical point
thank you
George

Réponse acceptée

george veropoulos
george veropoulos le 16 Juil 2021
format long
x = 2 ;
h = sqrt(eps) ;
f1=(sin(x + h)./(x+h) - sin(x)./x) / h % -0.400000
% -0.435397773981094
f2=cos(x)./x-sin(x)./x^2
% -0.435397774979992
  2 commentaires
Walter Roberson
Walter Roberson le 16 Juil 2021
format long
x = 2 ;
h = sqrt(eps(x)) ;
f1=(sin(x + h)./(x+h) - sin(x)./x) / h
f1 =
-0.435397778831590
f2=cos(x)./x-sin(x)./x^2
f2 =
-0.435397774979992
george veropoulos
george veropoulos le 16 Juil 2021
yes sqrt(eps(x) )

Connectez-vous pour commenter.

Plus de réponses (1)

Jan
Jan le 16 Juil 2021
Use one of the quotients of differences to get a numerical approximation of the derivative:
x = 1.2345;
h = sqrt(eps);
dy_right = (fa(x + h) - fa(x)) / (h)
dy_left = (fa(x) - fa(x - h)) / (h)
dy_both = (fa(x + h) - fa(x - h)) / (2 * h)
function y = fa(x)
y = sin(x./pi)
end
  9 commentaires
Jan
Jan le 18 Juil 2021
@george veropoulos: The numerical analysis for the optimal choice of h is still worth to write a PhD thesis. As said before, the 2nd derivative of the function matters. To estimate this, you need a further small variation. Because this is expensive, if the function to be evaluated is huge, some heuristics are useful. This can be an important part of the processing time if you optimize an expensive function. A related field is the optimal choice of temproal and spatial steps sizes in finite element problems, e.g. the simulation of the earth clima.
The rule of thumb: If the function and the argument are about 1 and do not explode nearby, sqrt(eps) is a fair choice between the cancellation and discretization error. The "fairness" can be checkd by testing 10*sqrt(eps) and 0.1*sqrt(eps): If they reply the same derivative, you can assume to be on the right side. For a professional simulation, the explanation must sound more seriously. ;-)
george veropoulos
george veropoulos le 19 Juil 2021
thank you all! very helpfull dicussion
George

Connectez-vous pour commenter.

Catégories

En savoir plus sur MATLAB dans Help Center et File Exchange

Produits


Version

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by