Sampling data at x_n=cos(n*pi/N) for fft derivative
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I am trying to find the derivative of nonperiodic function with chebyshev polynomials.
The function below is from 'Spectral methods in Matlab'. It expects that the vector v is sampled at x_n=cos(n*pi/N).
x = linspace(1,10,10);
y = rand(1,10)*10;
How to sample y at x_n = cos(n*pi/N) assuming domain [-1,1]
function w = chebfft(v)
N = length(v)-1; if N==0, w=0; return, end
x = cos((0:N)'*pi/N);
ii = 0:N-1;
v = v(:); V = [v; flipud(v(2:N))]; % transform x -> theta
U = real(fft(V));
W = real(ifft(1i*[ii 0 1-N:-1]'.*U));
w = zeros(N+1,1);
w(2:N) = W(2:N)./sqrt(1-x(2:N).^2); % transform theta -> x
w(1) = sum(ii'.^2.*U(ii+1))/N + .5*N*U(N+1);
w(N+1) = sum((-1).^(ii+1)'.*ii'.^2.*U(ii+1))/N + ...
.5*(-1)^(N+1)*N*U(N+1);
0 commentaires
Réponses (1)
Sulaymon Eshkabilov
le 14 Août 2021
I'd see here to use logical indexing for sampling. E.g.:
N=10; y=rand(1,N)*10;
x_n = cos((0:N)'*pi/N);
Y_Sampled=y(x_n>=0);
Voir également
Catégories
En savoir plus sur Fourier Analysis and Filtering dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!