Is it possible to avoid symbolic math for below query
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I have two matrices a and b. I need to find the value of x such that the determinant of (a + bx) is 0. The size of the matrices is 4x4. So in effect I need the roots of 4th order polynomial in variable x.
I did it by using the symbolic math tool box and below code :
syms l; char_matrix=a + l*b; determinant=det(char_matrix); R=solve(determinant);
This code is working but its taking too long for solving . Is there any way I can avoid symbolic math in such a situation as I think symbolic math takes longer than numerical math. Thank you for your time.
0 commentaires
Réponse acceptée
Andrew Newell
le 8 Juin 2011
As long as B has a nonzero determinant, you could recast it as an eigenvalue problem:
det(A+Bx) = det(B)*det(inv(B)*A+Ix) = 0,
where I is the identity, and you could use the following code:
x = -eig(B\A)
2 commentaires
Plus de réponses (2)
Jan
le 8 Juin 2011
You can do it numerically:
R = fzero(@(x) det(a + x * b), x0)
with a suiting initial value x0.
John D'Errico
le 9 Juin 2011
If A and B are known, then this is a simple problem using roots. I'll use my sympoly toolbox to show what is happening, and a way to solve it. Pick two arbitrary matrices.
>> A = magic(4)
A =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
>> B = round(rand(4)*5)
B =
1 2 2 3
4 3 3 3
5 2 2 1
0 2 4 5
See that the determinant is a polynomial of 4th degree in x.
>> det(A+B*x)
ans =
1125*x^2 + 406*x^3 + 4*x^4
>> roots(det(A+B*x))
ans =
0
0
-98.649
-2.851
There are 4 solutions here as you would expect. They need not all be real.
0 commentaires
Voir également
Catégories
En savoir plus sur Calculus dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!