Problem 1169. Count the Number of Directed Cycles in a Graph
Given an asymmetric adjacency matrix, determine the number of unique directed cycles.
For example, the graph represented by adjacency matrix
A = [
0 1 1 0;
1 1 0 1;
1 0 0 1;
1 1 0 0];
has 7 cycles. They are:
[2 -> 2]
[1 -> 2 -> 1]
[1 -> 3 -> 1]
[2 -> 4 -> 2]
[1 -> 2 -> 4 -> 1]
[1 -> 3 -> 4 -> 1]
[1 -> 3 -> 4 -> 2 -> 1]
The input is an adjacency matrix of 0s and 1s, and the output should be the number of unique (simple) directed cycles in the graph.
Solution Stats
Problem Comments
Solution Comments
Show commentsProblem Recent Solvers11
Suggested Problems
-
3714 Solvers
-
2970 Solvers
-
375 Solvers
-
Back to basics - mean of corner elements of a matrix
433 Solvers
-
Find out value of sine given by degree.
336 Solvers
More from this Author3
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!