Problem 42580. Conic equation
A conic of revolution (around the z axis) can be defined by the equation
s^2 – 2*R*z + (k+1)*z^2 = 0
where s^2=x^2+y^2, R is the vertex radius of curvature, and k is the conic constant: k<-1 for a hyperbola, k=-1 for a parabola, -1<k<0 for a tall ellipse, k=0 for a sphere, and k>0 for a short ellipse.
Write a function z=conic(s,R,k) to calculate height z as a function of radius s for given R and k. Choose the branch of the solution that gives z=s^2/(2*R)+... for small values of s. This defines a concave surface for R>0 and a convex surface for R<0.
The trick is to get full machine precision for all values of s and R. The test suite will require a relative error less than 4*eps, where eps is the machine precision.
Hint (added 2015/09/03): the straightforward solution is
z = (R-sqrt(R^2-(k+1)*s^2))/(k+1),
but this does not work if k=-1, gives the wrong branch of the solution if R<0, and is subject to severe roundoff error if s^2 is small compared to R^2. It is possible, however, to find a mathematically equivalent form of the solution that solves all three problems at once.
Solution Stats
Problem Comments
-
1 Comment
good one.
Solution Comments
Show commentsProblem Recent Solvers20
Suggested Problems
-
170 Solvers
-
Find the stride of the longest skip sequence
175 Solvers
-
Back to basics 12 - Input Arguments
618 Solvers
-
Unique values without using UNIQUE function
431 Solvers
-
Change the sign of even index entries of the reversed vector
626 Solvers
More from this Author11
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!