Problem 44830. Twists in 2D
So far we have represented the pose of an object in the plane using a homogeneous transformation, a 3x3 matrix belonging to the special Euclidean group SE(2), which is also a Lie group.
An alternative, and compact, representation of pose is as a twist, a 3-vector comprising the unique elements of the corresponding 3x3 matrix in the Lie algebra se(2). The matrix exponential of the Lie algebra matrix is a Lie group matrix.
Given a homogeneous transformation, return the corresponding twist as a column vector with the translational elements first.
Solution Stats
Problem Comments
Solution Comments
Show commentsProblem Recent Solvers16
Suggested Problems
-
3472 Solvers
-
Number of 1s in a binary string
10656 Solvers
-
Are all the three given point in the same line?
596 Solvers
-
907 Solvers
-
Calculate the Number of Sign Changes in a Row Vector (No Element Is Zero)
858 Solvers
More from this Author16
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!