MathWorks - Mobile View
  • Sign In to Your MathWorks AccountSe connecter
  • Access your MathWorks Account
    • Mon compte
    • Mon profil
    • Mes licences
    • Se déconnecter
  • Produits
  • Solutions
  • Le monde académique
  • Support
  • Communauté
  • Événements
  • Obtenir MATLAB
MathWorks
  • Produits
  • Solutions
  • Le monde académique
  • Support
  • Communauté
  • Événements
  • Obtenir MATLAB
  • Sign In to Your MathWorks AccountSe connecter
  • Access your MathWorks Account
    • Mon compte
    • Mon profil
    • Mes licences
    • Se déconnecter

Vidéos et webinars

  • MathWorks
  • Vidéos
  • Vidéos
  • Recherche
  • Vidéos
  • Recherche
  • Contacter un commercial
  • Version d'essai
  Register to watch video
  • Description
  • Full Transcript
  • Related Resources

Backtesting Strategy Framework in Financial Toolbox

Joe Collins, MathWorks

Learn how backtesting can help you compare how investment strategies perform over historical or simulated market data. You’ll see an overview of the backtesting feature in Financial Toolbox™ and a walk-through of the workflow to develop and run a backtest.

A backtesting strategy framework, first introduced in R2020b of Financial Toolbox, lets you define investment strategies, run backtests and generate performance metrics for your strategies from historical or simulated market data. The backesting framework, consists of MATLAB objects such as backteststrategy and backtestengine that simplify the workflow associated with developing and testing investment strategies.  The framework is a perfect middle ground between black box backtesting tools that don’t let you specify custom backtest conditions and writing a long code to test each of your strategies. With this framework, you can easily build custom investment strategies and assess their performance. You can use object properties to plot the equity curves of the strategies to visualize their performance over the year, compare the strategies turnover, and check the transaction costs of each method. Here’s an example of using the backtesting framework:

First, you define a backtest strategy object which specifies the logic used to make asset allocation decisions while a backtest is running. For example, equal-weighting, maximization of Sharpe ratio, or inverse variance…You can also specify other strategy parameters such as a transaction cost model, rebalance frequency to determine how often the backtesting engine rebalances and reallocates the portfolio, and a rolling lookback window. Once the strategy is defined, create a backtestengine object that specifies the parameters of the backtest which are the strategies defined earlier, the risk-free rate, the cash borrow rate, and the Initial Portfolio value. Then use the runbacktest method to run the backtest against historical asset price data and optionally any trading signal data such as sentiment analysis, text corpuses, or any technical indicator. The backtest is run over the timetable of dividend-adjusted asset price data. After the backtest is complete, you can generate a summary table of the backtest and visualize the results.

For more information on the backtesting workflow, please check the documentation page where you can find more examples on backtesting investment strategies. Thank you for watching.

Related Products

  • MATLAB
  • Financial Toolbox
  • Simulink

Feedback

Featured Product

MATLAB

  • Request Trial
  • Get Pricing

Up Next:

27:58
How MATLAB Did the Work of 40 People and Accelerated...

Related Videos:

28:27
Data Processing Framework Supporting Large Scale Driving...
8:38
MATLAB Unit Testing Framework
30:38
Data Processing Framework Supporting Large-Scale Driving...
39:20
Visualising Financial Data in MATLAB

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

Select web site

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Contacter un commercial
  • Version d'essai

Découvrir les produits

  • MATLAB
  • Simulink
  • Version étudiante
  • Support Hardware
  • File Exchange

Essayer ou Acheter

  • Téléchargements
  • Version d'essai
  • Contacter un commercial
  • Tarifs et licences
  • Comment acheter

Se Former

  • Documentation
  • Tutoriels
  • Exemples
  • Vidéos et webinars
  • Formation

Obtenir de l'aide

  • Aide à l'installation
  • Forum MATLAB
  • Services de consulting
  • Gestion Licences
  • Contacter le support technique

La société

  • Offres d'emploi
  • Actualités
  • Social Mission
  • Contacter un commercial
  • La société

MathWorks

Accelerating the pace of engineering and science

MathWorks est le leader mondial des logiciels de calcul mathématique pour les ingénieurs et les scientifiques.

Découvrir…

  • Select a Web Site United States
  • Brevets
  • Marques déposées
  • Charte de confidentialité
  • Lutte anti-piratage
  • État des applications

© 1994-2021 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Rejoignez la conversation