Predictive Maintenance in MATLAB and Simulink
In this webinar we will use machine learning in MATLAB and physical modeling in Simulink to demonstrate predictive maintenance concepts. Using data from a real world example, we will explore importing, pre-processing, and labeling data, as well as selecting features, and training and comparing multiple machine learning models. We will then consider a grid connected generation plant to demonstrate how a physical model of equipment can be used to complement machine learning techniques, by providing a platform to generate fault data for machine learning methods, and as an additional paradigm for monitoring system degradation.
Webinar Highlights:
- Developing larger scale physical simulations
- Using Big Data with simulations
- Estimating model parameters from measured data
- Prototyping, testing, and refining predictive models using machine learning methods
- Combining physical modeling and machine learning techniques for predictive maintenance
About the Presenter:
Graham Dudgeon, PhD Principal Industry Manager – Utilities & Energy MathWorks, Inc. Graham is Principal Industry Manager for Energy at MathWorks, and works closely with the Electric Power and Chemical & Petroleum industries worldwide. Before his role as industry manager, Graham was a Principal Technical Consultant at MathWorks and worked with a broad range of customers in the Electric Machinery, Aerospace, Defence, Automotive, Transport and Medical industries. Graham’s technical experience and expertise includes; electric grid simulation (transmission and distribution), renewable energy simulation (wind farm and solar farm operation and grid integration), control system design and analysis, data analytics, and power electronics.
Recorded: 9 Aug 2018
Featured Product
Statistics and Machine Learning Toolbox
Up Next:
Related Videos:
Sélectionner un site web
Choisissez un site web pour accéder au contenu traduit dans votre langue (lorsqu'il est disponible) et voir les événements et les offres locales. D’après votre position, nous vous recommandons de sélectionner la région suivante : .
Vous pouvez également sélectionner un site web dans la liste suivante :
Comment optimiser les performances du site
Pour optimiser les performances du site, sélectionnez la région Chine (en chinois ou en anglais). Les sites de MathWorks pour les autres pays ne sont pas optimisés pour les visites provenant de votre région.
Amériques
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asie-Pacifique
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)