Skip to content
MathWorks - Mobile View
  • Sign In to Your MathWorks AccountSe connecter
  • Access your MathWorks Account
    • Mon compte
    • Mon profil
    • Mes licences
    • Se déconnecter
  • Produits
  • Solutions
  • Le monde académique
  • Support
  • Communauté
  • Événements
  • Obtenir MATLAB
MathWorks
  • Produits
  • Solutions
  • Le monde académique
  • Support
  • Communauté
  • Événements
  • Obtenir MATLAB
  • Sign In to Your MathWorks AccountSe connecter
  • Access your MathWorks Account
    • Mon compte
    • Mon profil
    • Mes licences
    • Se déconnecter

Vidéos et webinars

  • MathWorks
  • Vidéos
  • Vidéos
  • Recherche
  • Vidéos
  • Recherche
  • Contacter l'équipe commerciale
  • Version d'essai
2:06 Video length is 2:06.
  • Description
  • Full Transcript
  • Related Resources

What Is Predictive Maintenance Toolbox?

Predictive Maintenance Toolbox™ provides capabilities for estimating the remaining useful life (RUL) of a machine and extracting features to design condition indicators which can help monitor the health of a machine. The toolbox also provides capabilities for managing and labeling data, as well as reference examples for developing algorithms for bearings, pumps, batteries, and other machines.

The Predictive Maintenance Toolbox™ provides capabilities and reference examples for designing and testing condition monitoring and predictive maintenance algorithms for ball bearings, pumps, batteries, and other machines.

Use the Diagnostic Feature Designer to extract features from sensor data without writing any MATLAB® code. Filter and preprocess sensor data signals and extract time domain features such as mean and standard deviation. You can also estimate a signal’s power and order spectra and extract frequency domain features such as spectral peak values. After you have computed your features, you can plot and rank them to determine which features are best suited for your fault classification and remaining useful life algorithms, and export them.

You can estimate the time to failure of your machine or its remaining useful life using similarity methods which require run-to-failure data, survival methods—which require lifetime data related to events such as part replacement and part failure—and trend-based methods, which require a known failure threshold.

As you can see, the methods also provide confidence intervals for the predictions made. 

Every algorithm needs data, and you can import yours from the cloud, HDFS, and local files before organizing it in MATLAB. If you don’t have any failure data, you can generate simulation data from Simulink® models of your machine that incorporate fault conditions.

The documentation and examples help you get started by stepping you through the workflow of the algorithm development process.

For more information on the Predictive Maintenance Toolbox, please return to the product page.

Related Products

  • Predictive Maintenance Toolbox

Learn More

MATLAB and Simulink for Predictive Maintenance
MATLAB and Simulink for Predictive Maintenance (4 videos)
Feature Extraction for Identifying Condition Indicators with MATLAB (Ebook)
What is Predictive Maintenance?

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper

Introduction to Predictive Maintenance with MATLAB

Read ebook

Feedback

Featured Product

Predictive Maintenance Toolbox

  • Request Trial
  • Get Pricing

Up Next:

38:27
Predictive Maintenance with MATLAB

Related Videos:

44:44
A Predictive Model of Building Power Usage Through PI...
3:59
Getting Started with Model Predictive Control Toolbox
28:18
Model Predictive Control of Diesel Engine Airpath
50:23
Predictive Modelling Made Easy with the New Machine...

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Contacter l'équipe commerciale
  • Version d'essai

MathWorks

Accelerating the pace of engineering and science

MathWorks est le leader mondial des logiciels de calcul mathématique pour les ingénieurs et les scientifiques.

Découvrir…

Découvrir les produits

  • MATLAB
  • Simulink
  • Version étudiante
  • Support Hardware
  • File Exchange

Essayer ou acheter

  • Téléchargements
  • Version d'essai
  • Contacter un commercial
  • Tarifs et licences
  • Comment acheter

Se former

  • Documentation
  • Tutoriels
  • Exemples
  • Vidéos et webinars
  • Formation

Obtenir de l'aide

  • Aide à l'installation
  • MATLAB Answers
  • Services de consulting
  • Centre de gestion des licences
  • Contacter le support technique

La société

  • Offres d'emploi
  • Actualités
  • Mission sociale
  • Témoignages clients
  • La société
  • Select a Web Site United States
  • Trust Center
  • Marques déposées
  • Charte de confidentialité
  • Lutte anti-piratage
  • État des applications

© 1994-2022 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Rejoignez la conversation