Real-Time Testing – Deploying a Reinforcement Learning Agent for Field-Oriented Control
Deploy a trained reinforcement learning policy to a Speedgoat system for real-time testing. Use the capabilities for implementing deep learning inference in Simulink® and plain C code generation for deep learning networks to deploy a trained reinforcement learning agent.
In this demo, a pretrained reinforcement learning agent for field-oriented control of a permanent magnet synchronous motor (PMSM) is used to showcase this workflow. Refer to "reinforcement learning for field-oriented control of a permanent magnet synchronous motor" to learn how to set up and train an agent for this application.
Published: 6 Dec 2021
Featured Product
Reinforcement Learning Toolbox
Up Next:
Related Videos:
Sélectionner un site web
Choisissez un site web pour accéder au contenu traduit dans votre langue (lorsqu'il est disponible) et voir les événements et les offres locales. D’après votre position, nous vous recommandons de sélectionner la région suivante : .
Vous pouvez également sélectionner un site web dans la liste suivante :
Comment optimiser les performances du site
Pour optimiser les performances du site, sélectionnez la région Chine (en chinois ou en anglais). Les sites de MathWorks pour les autres pays ne sont pas optimisés pour les visites provenant de votre région.
Amériques
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asie-Pacifique
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)