Linear System Identification | System Identification, Part 2
From the series: System Identification
Learn how to use system identification to fit and validate a linear model to data that has been corrupted by noise and external disturbances
Noise and disturbances can make it difficult to determine if the error between an identified model and the real data comes from incorrectly modeled essential dynamics, data influenced by a random disturbance process, or some combination of the two. Discover how to account for the random disturbances by fitting a first-order autoregressive moving average (ARMA1) model to the disturbance path. This can give you a better overall system model fit and confidence that the essential dynamics were captured correctly.
Sélectionner un site web
Choisissez un site web pour accéder au contenu traduit dans votre langue (lorsqu'il est disponible) et voir les événements et les offres locales. D’après votre position, nous vous recommandons de sélectionner la région suivante : .
Vous pouvez également sélectionner un site web dans la liste suivante :
Comment optimiser les performances du site
Pour optimiser les performances du site, sélectionnez la région Chine (en chinois ou en anglais). Les sites de MathWorks pour les autres pays ne sont pas optimisés pour les visites provenant de votre région.
Amériques
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asie-Pacifique
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)