La traduction de cette page n'est pas à jour. Cliquez ici pour voir la dernière version en anglais.
Computer Vision avec Deep Learning
Enrichir des workflows de Deep Learning avec des applications de Computer Vision
Appliquez le Deep Learning à des applications de Computer Vision en utilisant Deep Learning Toolbox™ avec Computer Vision Toolbox™.
Applications
Image Labeler | Label images for computer vision applications |
Video Labeler | Label video for computer vision applications |
Fonctions
Rubriques
Détection d’objets
- Getting Started with Object Detection Using Deep Learning (Computer Vision Toolbox)
Perform object detection using deep learning neural networks. - Augment Bounding Boxes for Object Detection
This example shows how to perform common kinds of image and bounding box augmentation as part of object detection workflows. - Train Object Detector Using R-CNN Deep Learning
This example shows how to train an object detector using deep learning and R-CNN (Regions with Convolutional Neural Networks). - Import Pretrained ONNX YOLO v2 Object Detector
This example shows how to import a pretrained ONNX™ (Open Neural Network Exchange) you only look once (YOLO) v2 [1] object detection network and use it to detect objects. - Export YOLO v2 Object Detector to ONNX
This example shows how to export a YOLO v2 object detection network to ONNX™ (Open Neural Network Exchange) model format. - Deploy Object Detection Model as Microservice (MATLAB Compiler SDK)
Use a microservice to detect objects in images.
Segmentation sémantique
- Getting Started with Semantic Segmentation Using Deep Learning (Computer Vision Toolbox)
Segment objects by class using deep learning. - Augment Pixel Labels for Semantic Segmentation
This example shows how to perform common kinds of image and pixel label augmentation as part of semantic segmentation workflows. - Semantic Segmentation Using Dilated Convolutions
Train a semantic segmentation network using dilated convolutions. - Semantic Segmentation of Multispectral Images Using Deep Learning
This example shows how to perform semantic segmentation of a multispectral image with seven channels using U-Net. - 3-D Brain Tumor Segmentation Using Deep Learning
This example shows how to perform semantic segmentation of brain tumors from 3-D medical images. - Explore Semantic Segmentation Network Using Grad-CAM
This example shows how to explore the predictions of a pretrained semantic segmentation network using Grad-CAM. - Generate Adversarial Examples for Semantic Segmentation (Computer Vision Toolbox)
Generate adversarial examples for a semantic segmentation network using the basic iterative method (BIM).
Classification de vidéos
- Activity Recognition from Video and Optical Flow Data Using Deep Learning
This example first shows how to perform activity recognition using a pretrained Inflated 3-D (I3D) two-stream convolutional neural network based video classifier and then shows how to use transfer learning to train such a video classifier using RGB and optical flow data from videos [1]. - Gesture Recognition using Videos and Deep Learning
Perform gesture recognition using a pretrained SlowFast video classifier.