La traduction de cette page n'est pas à jour. Cliquez ici pour voir la dernière version en anglais.
Deep Learning avec Simulink
Implémentez des fonctionnalités de Deep Learning dans des modèles Simulink® avec des blocs des bibliothèques Deep Neural Networks et Python Neural Networks incluses dans Deep Learning Toolbox™ ou avec le bloc Deep Learning Object Detector de la bibliothèque Analysis & Enhancement incluse dans Computer Vision Toolbox™.
Les fonctionnalités de Deep Learning dans Simulink utilisent le bloc MATLAB Function qui nécessite un compilateur supporté. Pour la plupart des plateformes, un compilateur C par défaut est fourni avec l’installation MATLAB®. Si vous utilisez le langage C++, vous devez installer un compilateur C++ compatible. Pour voir une liste des compilateurs supportés, ouvrez Compilateurs supportés et compatibles, cliquez sur l’onglet qui correspond à votre système d’exploitation, trouvez la table Simulink Product Family et allez dans la colonne For Model Referencing, Accelerator mode, Rapid Accelerator mode, and MATLAB Function blocks. Si vous avez plusieurs compilateurs compatibles MATLAB installés sur votre système, vous pouvez modifier le compilateur par défaut avec la commande mex -setup
. Veuillez consulter Change Default Compiler.
Blocs
Image Classifier | Classer des données avec un réseau de neurones entraîné pour le Deep Learning (depuis R2020b) |
Predict | Predict responses using a trained deep learning neural network (depuis R2020b) |
Stateful Classify | Classify data using a trained deep learning recurrent neural network (depuis R2021a) |
Stateful Predict | Predict responses using a trained recurrent neural network (depuis R2021a) |
Deep Learning Object Detector | Detect objects using trained deep learning object detector (depuis R2021b) |
TensorFlow Model Predict | Predict responses using pretrained Python TensorFlow model (depuis R2024a) |
PyTorch Model Predict | Predict responses using pretrained Python PyTorch model (depuis R2024a) |
ONNX Model Predict | Predict responses using pretrained Python ONNX model (depuis R2024a) |
Custom Python Model Predict | Predict responses using pretrained custom Python model (depuis R2024a) |
Rubriques
Images
- Classify Images in Simulink Using GoogLeNet
This example shows how to classify an image in Simulink® using theImage Classifier
block. - Acceleration for Simulink Deep Learning Models
Improve simulation speed with accelerator and rapid accelerator modes. - Lane and Vehicle Detection in Simulink Using Deep Learning
This example shows how to use deep convolutional neural networks inside a Simulink® model to perform lane and vehicle detection. - Classify ECG Signals in Simulink Using Deep Learning
This example shows how to use wavelet transforms and a deep learning network within a Simulink (R) model to classify ECG signals. - Classify Images in Simulink with Imported TensorFlow Network
Import a pretrained TensorFlow™ network usingimportTensorFlowNetwork
, and then use the Predict block for image classification in Simulink.
Séquences
- Predict and Update Network State in Simulink
This example shows how to predict responses for a trained recurrent neural network in Simulink® by using theStateful Predict
block. - Classify and Update Network State in Simulink
This example shows how to classify data for a trained recurrent neural network in Simulink® by using theStateful Classify
block. - Speech Command Recognition in Simulink
Detect the presence of speech commands in audio using a Simulink model. - Time Series Prediction in Simulink Using Deep Learning Network
This example shows how to use an LSTM deep learning network inside a Simulink® model to predict the remaining useful life (RUL) of an engine. - Physical System Modeling Using LSTM Network in Simulink
This example shows how to create a reduced order model (ROM) to replace a Simscape component in a Simulink® model by training a long short-term memory (LSTM) neural network. - Improve Performance of Deep Learning Simulations in Simulink
This example shows how to use code generation to improve the performance of deep learning simulations in Simulink®.
Reinforcement Learning
- Control Water Level in a Tank Using a DDPG Agent
Train a controller using reinforcement learning with a plant modeled in Simulink as the training environment. - Train DDPG Agent for Adaptive Cruise Control
Train a reinforcement learning agent for an adaptive cruise control application. - Train DQN Agent for Lane Keeping Assist Using Parallel Computing
Train a reinforcement learning agent for a lane keeping assist application. - Train DDPG Agent for Path-Following Control
Train a reinforcement learning agent for a lane following application.
Coexécution avec Python
- Classify Images Using TensorFlow Model Predict Block
Classify images using TensorFlow Model Predict block. - Classify Images Using ONNX Model Predict Block
Classify images using ONNX Model Predict block. - Classify Images Using PyTorch Model Predict Block
Classify images using PyTorch Model Predict block. - Predict Responses Using TensorFlow Model Predict Block
Predict Responses Using TensorFlow Model Predict block. - Predict Responses Using ONNX Model Predict Block
Predict Responses Using ONNX Model Predict block. - Predict Responses Using PyTorch Model Predict Block
Predict Responses Using PyTorch Model Predict block. - Predict Responses Using Custom Python Model in Simulink (Statistics and Machine Learning Toolbox)
This example shows how to use the Custom Python Model Predict (Statistics and Machine Learning Toolbox) block for prediction in Simulink®.
Génération de code
- Génération de code de Deep Learning depuis des applications Simulink
Générer du code C/C++ et GPU pour le déploiement sur un ordinateur ou des cibles embarquées - Export Network to FMU
This example shows how to export a trained network as a Functional Mock-up Unit (FMU). (depuis R2023b)