simByMilstein2
Simulate BM
, GBM
, CEV
,
HWV
, SDEDDO
, SDELD
,
SDEMRD
process sample paths by second order Milstein
approximation
Since R2023b
Syntax
Description
[
simulates Paths
,Times
,Z
] = simByMilstein2(MDL
,NPeriods
)NTrials
sample paths of NVARS
state
variables driven by the BM
, GBM
,
CEV
, HWV
, SDEDDO
,
SDELD
, or SDEMRD
process sources of risk
over NPeriods
consecutive observation periods, approximating
continuous-time by the second order Milstein approximation.
simByMilstein2
provides a discrete-time approximation of the
underlying generalized continuous-time process. The simulation is derived directly
from the stochastic differential equation of motion; the discrete-time process
approaches the true continuous-time process only in the limit as
DeltaTime
approaches zero.
simByMilstein2
is only valid for diagonal diffusion SDE
models.
[
specifies options using one or more name-value pair arguments in addition to the
input arguments in the previous syntax.Paths
,Times
,Z
] = simByMilstein2(___,Name=Value
)
You can perform quasi-Monte Carlo simulations using the name-value arguments for
MonteCarloMethod
, QuasiSequence
, and
BrownianMotionMethod
. For more information, see Quasi-Monte Carlo Simulation.
Examples
Input Arguments
Output Arguments
More About
Algorithms
This function simulates any vector-valued SDE of the form
where:
X is an NVars-by-
1
state vector of process variables (for example, short rates or equity prices) to simulate.W is an NBrowns-by-
1
Brownian motion vector.F is an NVars-by-
1
vector-valued drift-rate function.G is an NVars-by-NBrowns matrix-valued diffusion-rate function.
simByEuler
simulates NTrials
sample
paths of NVars
correlated state variables driven by
NBrowns
Brownian motion sources of risk over
NPeriods
consecutive observation periods, using the Euler
approach to approximate continuous-time stochastic processes.
Consider the process X satisfying a stochastic differential equation of the form.
The attempt of including a term of O(dt) in the drift refines the Euler scheme and results in the algorithm derived by Milstein [1].
Further refining of the Euler scheme gives out a metho with a weak order 2:
where dI is given by the area of the triangle with base dt and height dW.
References
[1] Milstein, G.N. "A Method of Second-Order Accuracy Integration of Stochastic Differential Equations."Theory of Probability and Its Applications, 23, 1978, pp. 396–401.
Version History
Introduced in R2023b