finportfolio
Create a finportfolio object
Description
Create a finportfolio object for a collection of instrument
objects.
After creating instruments, models, and pricer objects, use
finportfolio to create a finportfolio object
for a collection of instruments. For more detailed information on this workflow, see
Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments.
For more information on the available instruments, models, and pricing methods, see Choose Instruments, Models, and Pricers.
Creation
Syntax
Description
creates an empty finportfolio_obj = finportfoliofinportfolio object.
creates a finportfolio_obj = finportfolio(inInstruments)finportfolio object containing the instrument
objects inInstruments.
creates a finportfolio_obj = finportfolio(inInstruments,inPricers)finportfolio object containing the instrument
objects inInstruments and the pricer objects
inPricers.
optionally sets the finportfolio_obj = finportfolio(___,inQuant)inQuant property which specifies
the number of instruments. Use this syntax with any of the input argument
combinations in previous syntaxes to set the properties for the
finportfolio object. For example,
finportfolio_obj =
finportfolio([CapObj,FloorObj,SwaptionObj],[BlackPricerObj,NormalPricerObj,SabrPricerObj])
creates a finportfolio object that contains instrument
and pricer objects.
Input Arguments
Instrument objects in the portfolio, specified as a scalar Instrument object or an array of Instrument objects.
Data Types: object
Pricer objects in the portfolio, specified as a scalar Pricer object or an array of Pricer objects.
Data Types: object
Number of instruments, specified as a scalar numeric or an
NINST-by-1 array of numeric
values. Use a positive value for long positions and a negative value for
short positions.
Data Types: double
Output Arguments
Collection of instrument objects, returned as a
finportfolio object.
Properties
Instrument objects in the portfolio, returned as a scalar instrument object or an array of instrument objects.
Data Types: struct
Pricer objects in the portfolio, returned as a scalar pricer object or an array of pricer objects.
Data Types: struct
This property is read-only.
Mapping of instrument objects to pricer objects in the portfolio, returned as numeric.
PricerIndex has a length equal to the number of
instrument objects in the finportfolio object and stores
an index of which pricer is used for each instrument object.
Data Types: struct
Number of instruments, returned as a scalar numeric or numeric array.
Data Types: double
Object Functions
pricePortfolio | Compute price and sensitivities for portfolio of instruments |
addInstrument | Add instrument to portfolio of instruments |
removeInstrument | Remove instrument from portfolio of instruments |
setPricer | Set pricer for finportfolio object |
Examples
Use finportfolio and pricePortfolio to create and price a portfolio containing a FixedBond instrument and an American Vanilla option instrument.
Create FixedBond Instrument Object
Use fininstrument to create a FixedBond instrument object.
FixB = fininstrument("FixedBond",'Maturity',datetime(2022,9,15),'CouponRate',0.05,'Name',"fixed_bond")
FixB =
FixedBond with properties:
CouponRate: 0.0500
Period: 2
Basis: 0
EndMonthRule: 1
Principal: 100
DaycountAdjustedCashFlow: 0
BusinessDayConvention: "actual"
Holidays: NaT
IssueDate: NaT
FirstCouponDate: NaT
LastCouponDate: NaT
StartDate: NaT
Maturity: 15-Sep-2022
Name: "fixed_bond"
Create ratecurve Object
Create a ratecurve object using ratecurve.
Settle = datetime(2018,9,15); Type = 'zero'; ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]'; ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]'; ZeroDates = Settle + ZeroTimes; myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)
myRC =
ratecurve with properties:
Type: "zero"
Compounding: -1
Basis: 0
Dates: [10×1 datetime]
Rates: [10×1 double]
Settle: 15-Sep-2018
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create Discount Pricer Object for FixedBond Instrument
Use finpricer to create a Discount pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
FBPricer = finpricer("Discount",'DiscountCurve',myRC)
FBPricer =
Discount with properties:
DiscountCurve: [1×1 ratecurve]
Create Vanilla Instrument Object
Use fininstrument to create an American Vanilla instrument object.
Maturity = datetime(2023,9,15); AmericanOpt = fininstrument("Vanilla",'ExerciseDate',Maturity,'Strike',120,'ExerciseStyle',"american",'Name',"vanilla_option")
AmericanOpt =
Vanilla with properties:
OptionType: "call"
ExerciseStyle: "american"
ExerciseDate: 15-Sep-2023
Strike: 120
Name: "vanilla_option"
Create BlackScholes Model Object for Vanilla Instrument
Use finmodel to create a BlackScholes model object.
BSModel = finmodel("BlackScholes",'Volatility',0.12)
BSModel =
BlackScholes with properties:
Volatility: 0.1200
Correlation: 1
Create BjerksundStensland Pricer Object for Vanilla Instrument
Use finpricer to create an analytic pricer object for the BjerksundStensland pricing method and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
BJSPricer = finpricer("analytic",'Model',BSModel,'DiscountCurve',myRC,'SpotPrice',100,'DividendValue',.02,'PricingMethod',"BjerksundStensland")
BJSPricer =
BjerksundStensland with properties:
DiscountCurve: [1×1 ratecurve]
Model: [1×1 finmodel.BlackScholes]
SpotPrice: 100
DividendValue: 0.0200
DividendType: "continuous"
Add the Instruments to a finportfolio Object
Create a finportfolio object using finportfolio and add the two instruments with their associated pricers to the portfolio.
f1 = finportfolio([AmericanOpt,FixB],[BJSPricer,FBPricer])
f1 =
finportfolio with properties:
Instruments: [2×1 fininstrument.FinInstrument]
Pricers: [2×1 finpricer.FinPricer]
PricerIndex: [2×1 double]
Quantity: [2×1 double]
Price Portfolio
Use pricePortfolio to compute the price and sensitivities for the portfolio and the instruments in the portfolio.
[PortPrice,InstPrice,PortSens,InstSens] = pricePortfolio(f1)
PortPrice = 119.1665
InstPrice = 2×1
3.1912
115.9753
PortSens=1×8 table
Price DV01 Delta Gamma Lambda Vega Theta Rho
______ _______ _______ ________ ______ ______ ________ _____
119.17 0.04295 0.23188 0.011522 7.2661 65.454 -0.81408 86.71
InstSens=2×8 table
Price DV01 Delta Gamma Lambda Vega Theta Rho
______ _______ _______ ________ ______ ______ ________ _____
vanilla_option 3.1912 NaN 0.23188 0.011522 7.2661 65.454 -0.81408 86.71
fixed_bond 115.98 0.04295 NaN NaN NaN NaN NaN NaN
This example shows the workflow to create and price a portfolio of bond and bond option instruments. You can use finportfolio and pricePortfolio to price FixedBond, FixedBondOption, OptionEmbeddedFixedBond, and FloatBond instruments using an IRTree pricing method.
Create ratecurve Object
Create a ratecurve object using ratecurve.
Settle = datetime(2018, 1, 1); ZeroTimes = calyears(1:4)'; ZeroRates = [0.035; 0.042147; 0.047345; 0.052707]; ZeroDates = Settle + ZeroTimes; Compounding = 1; ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates, "Compounding",Compounding)
ZeroCurve =
ratecurve with properties:
Type: "zero"
Compounding: 1
Basis: 0
Dates: [4×1 datetime]
Rates: [4×1 double]
Settle: 01-Jan-2018
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create Bond and Option Instruments
Use fininstrument to create a FixedBond, FixedBondOption, OptionEmbeddedFixedBond, and FloatBond instrument objects.
CDates = datetime([2020,1,1 ; 2022,1,1]); CRates = [.0425; .0750]; CouponRate = timetable(CDates,CRates); Maturity = datetime(2022,1,1); Period = 1; % Vanilla FixedBond VBond = fininstrument("FixedBond",'Maturity',Maturity,'CouponRate',0.0425,'Period',Period,'Name',"vanilla_fixed")
VBond =
FixedBond with properties:
CouponRate: 0.0425
Period: 1
Basis: 0
EndMonthRule: 1
Principal: 100
DaycountAdjustedCashFlow: 0
BusinessDayConvention: "actual"
Holidays: NaT
IssueDate: NaT
FirstCouponDate: NaT
LastCouponDate: NaT
StartDate: NaT
Maturity: 01-Jan-2022
Name: "vanilla_fixed"
% Stepped coupon bond SBond = fininstrument("FixedBond",'Maturity',Maturity,'CouponRate',CouponRate,'Period',Period,'Name',"stepped_coupon_bond")
SBond =
FixedBond with properties:
CouponRate: [2×1 timetable]
Period: 1
Basis: 0
EndMonthRule: 1
Principal: 100
DaycountAdjustedCashFlow: 0
BusinessDayConvention: "actual"
Holidays: NaT
IssueDate: NaT
FirstCouponDate: NaT
LastCouponDate: NaT
StartDate: NaT
Maturity: 01-Jan-2022
Name: "stepped_coupon_bond"
% FloatBond Spread = 0; Reset = 1; Float = fininstrument("FloatBond",'Maturity',Maturity,'Spread',Spread,'Reset', Reset, ... 'ProjectionCurve',ZeroCurve,'Name',"floatbond")
Float =
FloatBond with properties:
Spread: 0
ProjectionCurve: [1×1 ratecurve]
ResetOffset: 0
Reset: 1
Basis: 0
EndMonthRule: 1
Principal: 100
DaycountAdjustedCashFlow: 0
BusinessDayConvention: "actual"
LatestFloatingRate: NaN
Holidays: NaT
IssueDate: NaT
FirstCouponDate: NaT
LastCouponDate: NaT
StartDate: NaT
Maturity: 01-Jan-2022
Name: "floatbond"
% Call option Strike = 100; ExerciseDates = datetime(2020,1,1); OptionType ='call'; Period = 1; CallOption = fininstrument("FixedBondOption",'Strike',Strike,'ExerciseDate',ExerciseDates, ... 'OptionType',OptionType,'ExerciseStyle',"american",'Bond', VBond,'Name',"fixed_bond_option")
CallOption =
FixedBondOption with properties:
OptionType: "call"
ExerciseStyle: "american"
ExerciseDate: 01-Jan-2020
Strike: 100
Bond: [1×1 fininstrument.FixedBond]
Name: "fixed_bond_option"
% Option for embedded bond (callable bond) CDates = datetime([2020,1,1 ; 2022,1,1]); CRates = [.0425; .0750]; CouponRate = timetable(CDates,CRates); StrikeOE = [100; 100]; ExerciseDatesOE = [datetime(2020,1,1); datetime(2021,1,1)]; CallSchedule = timetable(ExerciseDatesOE,StrikeOE,'VariableNames',{'Strike Schedule'}); CallableBond = fininstrument("OptionEmbeddedFixedBond", 'Maturity',Maturity, ... 'CouponRate',CouponRate,'Period', Period, ... 'CallSchedule',CallSchedule,'Name',"option_embedded_fixedbond")
CallableBond =
OptionEmbeddedFixedBond with properties:
CouponRate: [2×1 timetable]
Period: 1
Basis: 0
EndMonthRule: 1
Principal: 100
DaycountAdjustedCashFlow: 0
BusinessDayConvention: "actual"
Holidays: NaT
IssueDate: NaT
FirstCouponDate: NaT
LastCouponDate: NaT
StartDate: NaT
Maturity: 01-Jan-2022
CallDates: [2×1 datetime]
PutDates: [0×1 datetime]
CallSchedule: [2×1 timetable]
PutSchedule: [0×0 timetable]
CallExerciseStyle: "american"
PutExerciseStyle: [0×0 string]
Name: "option_embedded_fixedbond"
Create HullWhite Model
Use finmodel to create a HullWhite model object.
VolCurve = 0.01; AlphaCurve = 0.1; HWModel = finmodel("hullwhite",'alpha',AlphaCurve,'sigma',VolCurve)
HWModel =
HullWhite with properties:
Alpha: 0.1000
Sigma: 0.0100
Create IRTree Pricer for HullWhite Model
Use finpricer to create an IRTree pricer object for a HullWhite model and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
HWTreePricer = finpricer("IRTree",'Model',HWModel,'DiscountCurve',ZeroCurve,'TreeDates',ZeroDates)
HWTreePricer =
HWBKTree with properties:
Tree: [1×1 struct]
TreeDates: [4×1 datetime]
Model: [1×1 finmodel.HullWhite]
DiscountCurve: [1×1 ratecurve]
Create finportfolio Object and Add Callable Bond Instrument
Create a finportfolio object with the vanilla bond, stepped coupon bond, float bond, and the call option.
myportfolio = finportfolio([VBond,SBond,Float,CallOption],HWTreePricer, [1,2,2,1])
myportfolio =
finportfolio with properties:
Instruments: [4×1 fininstrument.FinInstrument]
Pricers: [1×1 finpricer.irtree.HWBKTree]
PricerIndex: [4×1 double]
Quantity: [4×1 double]
Use addInstrument to add the callable bond instrument to the existing portfolio.
myportfolio = addInstrument(myportfolio,CallableBond,HWTreePricer,1)
myportfolio =
finportfolio with properties:
Instruments: [5×1 fininstrument.FinInstrument]
Pricers: [1×1 finpricer.irtree.HWBKTree]
PricerIndex: [5×1 double]
Quantity: [5×1 double]
myportfolio.PricerIndex
ans = 5×1
1
1
1
1
1
The PricerIndex property has a length equal to the length of instrument objects in the finportfolio object and stores the index of which pricer is used for each instrument object. In this case, because there is only one pricer, each instrument must use that pricer.
Price Portfolio
Use pricePortfolio to compute the price and sensitivities for the portfolio and the bond and option instruments in the portfolio.
format bank
[PortPrice,InstPrice,PortSens,InstSens] = pricePortfolio(myportfolio)PortPrice =
600.55
InstPrice = 5×1
96.59
204.14
200.00
0.05
99.77
PortSens=1×4 table
Price Delta Gamma Vega
______ ________ _______ ______
600.55 -1297.48 5759.65 -63.40
InstSens=5×4 table
Price Delta Gamma Vega
______ _______ _______ ______
vanilla_fixed 96.59 -344.81 1603.49 -0.00
stepped_coupon_bond 204.14 -725.96 3364.60 0.00
floatbond 200.00 0.00 -0.00 -0.00
fixed_bond_option 0.05 -3.69 24.15 12.48
option_embedded_fixedbond 99.77 -223.03 767.41 -75.88
Use finportfolio and pricePortfolio to create and price a portfolio containing three FixedBond instruments and three American Vanilla option instruments.
Create FixedBond Instrument Object
Use fininstrument to create a FixedBond instrument object for three Fixed Bond instruments.
FixB = fininstrument("FixedBond",'Maturity',datetime([2022,9,15 ; 2022,10,15 ; 2022,11,15]),'CouponRate',0.05,'Name',"fixed_bond")
FixB=3×1 FixedBond array with properties:
CouponRate
Period
Basis
EndMonthRule
Principal
DaycountAdjustedCashFlow
BusinessDayConvention
Holidays
IssueDate
FirstCouponDate
LastCouponDate
StartDate
Maturity
Name
Create ratecurve Object
Create a ratecurve object using ratecurve.
Settle = datetime(2018,9,15); Type = 'zero'; ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]'; ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]'; ZeroDates = Settle + ZeroTimes; myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)
myRC =
ratecurve with properties:
Type: "zero"
Compounding: -1
Basis: 0
Dates: [10×1 datetime]
Rates: [10×1 double]
Settle: 15-Sep-2018
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create Discount Pricer Object for FixedBond Instruments
Use finpricer to create a Discount pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
FBPricer = finpricer("Discount",'DiscountCurve',myRC)
FBPricer =
Discount with properties:
DiscountCurve: [1×1 ratecurve]
Create Vanilla Instrument Object
Use fininstrument to create an American Vanilla instrument object for three Vanilla instruments.
Maturity = datetime([2023,9,15 ; 2023,10,15 ; 2023,11,15]); AmericanOpt = fininstrument("Vanilla",'ExerciseDate',Maturity,'Strike',120,'ExerciseStyle',"american",'Name',"vanilla_option")
AmericanOpt=3×1 Vanilla array with properties:
OptionType
ExerciseStyle
ExerciseDate
Strike
Name
Create BlackScholes Model Object for Vanilla Instruments
Use finmodel to create a BlackScholes model object.
BSModel = finmodel("BlackScholes",'Volatility',0.12)
BSModel =
BlackScholes with properties:
Volatility: 0.1200
Correlation: 1
Create BjerksundStensland Pricer Object for Vanilla Instruments
Use finpricer to create an analytic pricer object for the BjerksundStensland pricing method and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
BJSPricer = finpricer("analytic",'Model',BSModel,'DiscountCurve',myRC,'SpotPrice',100,'DividendValue',.02,'PricingMethod',"BjerksundStensland")
BJSPricer =
BjerksundStensland with properties:
DiscountCurve: [1×1 ratecurve]
Model: [1×1 finmodel.BlackScholes]
SpotPrice: 100
DividendValue: 0.0200
DividendType: "continuous"
Add the Instruments to a finportfolio Object
Create a finportfolio object using finportfolio and add the six instruments with their associated pricers to the portfolio.
f1 = finportfolio([AmericanOpt;FixB],[BJSPricer, BJSPricer, BJSPricer, FBPricer, FBPricer, FBPricer])
f1 =
finportfolio with properties:
Instruments: [6×1 fininstrument.FinInstrument]
Pricers: [6×1 finpricer.FinPricer]
PricerIndex: [6×1 double]
Quantity: [6×1 double]
Price Portfolio
Use pricePortfolio to compute the price and sensitivities for the portfolio and the instruments in the portfolio.
[PortPrice,InstPrice,PortSens,InstSens] = pricePortfolio(f1)
PortPrice = 358.4108
InstPrice = 6×1
3.1912
3.2579
3.3272
115.9753
116.2114
116.4478
PortSens=1×8 table
Price DV01 Delta Gamma Lambda Vega Theta Rho
______ _______ _______ ________ ______ ______ _______ ______
358.41 0.13159 0.70286 0.034471 21.572 198.96 -2.4455 266.62
InstSens=6×8 table
Price DV01 Delta Gamma Lambda Vega Theta Rho
______ ________ _______ ________ ______ ______ ________ ______
vanilla_option 3.1912 NaN 0.23188 0.011522 7.2661 65.454 -0.81408 86.71
vanilla_option_1 3.2579 NaN 0.23427 0.011494 7.1907 66.314 -0.81353 88.842
vanilla_option_2 3.3272 NaN 0.23672 0.011455 7.1147 67.196 -0.81784 91.063
fixed_bond 115.98 0.04295 NaN NaN NaN NaN NaN NaN
fixed_bond_1 116.21 0.043858 NaN NaN NaN NaN NaN NaN
fixed_bond_2 116.45 0.044786 NaN NaN NaN NaN NaN NaN
Version History
Introduced in R2020a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Sélectionner un site web
Choisissez un site web pour accéder au contenu traduit dans votre langue (lorsqu'il est disponible) et voir les événements et les offres locales. D’après votre position, nous vous recommandons de sélectionner la région suivante : .
Vous pouvez également sélectionner un site web dans la liste suivante :
Comment optimiser les performances du site
Pour optimiser les performances du site, sélectionnez la région Chine (en chinois ou en anglais). Les sites de MathWorks pour les autres pays ne sont pas optimisés pour les visites provenant de votre région.
Amériques
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)