swaptionbybk
Price swaption from Black-Karasinski interest-rate tree
Syntax
Description
[
prices swaption using a Black-Karasinski tree.Price,PriceTree]
= swaptionbybk(BKTree,OptSpec,Strike,ExerciseDates,Spread,Settle,Maturity)
Note
Alternatively, you can use the Swaption object to price
swaption instruments. For more information, see Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments.
[
adds optional name-value pair arguments.Price,PriceTree]
= swaptionbybk(___,Name,Value)
Examples
This example shows how to price a 4-year call and put swaption using a BK interest-rate tree, assuming the interest rate is fixed at 7% annually.
Rates =0.07 * ones (10,1); Compounding = 2; StartDates = [datetime(2007,1,1) ; datetime(2007,7,1) ; datetime(2008,1,1) ; datetime(2008,7,1) ; datetime(2009,1,1) ; datetime(2009,7,1) ; datetime(2010,1,1) ; datetime(2010,7,1) ; datetime(2011,1,1) ; datetime(2011,7,1)]; EndDates = [datetime(2007,7,1) ; datetime(2008,1,1) ; datetime(2008,7,1) ; datetime(2009,1,1) ; datetime(2009,7,1) ; datetime(2010,1,1) ; datetime(2010,7,1) ; datetime(2011,1,1) ; datetime(2011,7,1) ; datetime(2012,1,1)]; ValuationDate = datetime(2007,1,1); % define the RateSpec RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates', EndDates,... 'Compounding', Compounding); % use BKVolSpec to compute the interest-rate volatility Volatility = 0.10*ones(10,1); AlphaCurve = 0.05*ones(10,1); AlphaDates = EndDates; BKVolSpec = bkvolspec(ValuationDate, EndDates, Volatility, AlphaDates, AlphaCurve); % use BKTimeSpec to specify the structure of the time layout for the BK interest-rate tree BKTimeSpec = bktimespec(ValuationDate, EndDates, Compounding); % build the BK tree BKTree = bktree(BKVolSpec, RateSpec, BKTimeSpec); % use the following arguments for a 1-year swap and 4-year swaption ExerciseDates = datetime(2011,1,1); SwapSettlement = ExerciseDates; SwapMaturity = datetime(2012,1,1); Spread = 0; SwapReset = 2 ; Principal = 100; OptSpec = {'call' ;'put'}; Strike= [ 0.07 ; 0.0725]; Basis=1; % price the swaption PriceSwaption = swaptionbybk(BKTree, OptSpec, Strike, ExerciseDates, ... Spread, SwapSettlement, SwapMaturity, 'SwapReset', SwapReset, 'Basis', Basis, ... 'Principal', Principal)
PriceSwaption = 2×1
0.3634
0.4798
This example shows how to price a 4-year call and put swaption with receiving and paying legs using a BK interest-rate tree, assuming the interest rate is fixed at 7% annually. Build a tree with the following data.
Rates =0.07 * ones (10,1); Compounding = 2; StartDates = [datetime(2007,1,1) ; datetime(2007,7,1) ; datetime(2008,1,1) ; datetime(2008,7,1) ; datetime(2009,1,1) ; datetime(2009,7,1) ; datetime(2010,1,1) ; datetime(2010,7,1) ; datetime(2011,1,1) ; datetime(2011,7,1)]; EndDates = [datetime(2007,7,1) ; datetime(2008,1,1) ; datetime(2008,7,1) ; datetime(2009,1,1) ; datetime(2009,7,1) ; datetime(2010,1,1) ; datetime(2010,7,1) ; datetime(2011,1,1) ; datetime(2011,7,1) ; datetime(2012,1,1)]; ValuationDate = datetime(2007,1,1);
Define the RateSpec.
RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates', EndDates,... 'Compounding', Compounding)
RateSpec = struct with fields:
FinObj: 'RateSpec'
Compounding: 2
Disc: [10×1 double]
Rates: [10×1 double]
EndTimes: [10×1 double]
StartTimes: [10×1 double]
EndDates: [10×1 double]
StartDates: [10×1 double]
ValuationDate: 733043
Basis: 0
EndMonthRule: 1
Use BKVolSpec to compute interest-rate volatility.
Volatility = 0.10*ones(10,1); AlphaCurve = 0.05*ones(10,1); AlphaDates = EndDates; BKVolSpec = bkvolspec(ValuationDate, EndDates, Volatility, AlphaDates, AlphaCurve);
Use BKTimeSpec to specify the structure of the time layout for a BK tree.
BKTimeSpec = bktimespec(ValuationDate, EndDates, Compounding);
Build the BK tree.
BKTree = bktree(BKVolSpec, RateSpec, BKTimeSpec);
Define the arguments for a 1-year swap and 4-year swaption.
ExerciseDates = datetime(2011,1,1); SwapSettlement = ExerciseDates; SwapMaturity = datetime(2012,1,1); Spread = 0; SwapReset = [2 2]; % 1st column represents swaption receiving leg, 2nd column represents swaption paying leg Principal = 100; OptSpec = {'call' ;'put'}; Strike= [ 0.07 ; 0.0725]; Basis= [1 3]; % 1st column represents swaption receiving leg, 2nd column represents swaption paying leg
Price the swaption.
PriceSwaption = swaptionbybk(BKTree, OptSpec, Strike, ExerciseDates, ... Spread, SwapSettlement, SwapMaturity, 'SwapReset', SwapReset, 'Basis', Basis, ... 'Principal', Principal)
PriceSwaption = 2×1
0.3634
0.4798
Input Arguments
Interest-rate tree structure, specified by using bktree.
Data Types: struct
Definition of the option as 'call' or 'put',
specified as a NINST-by-1 cell
array of character vectors. For more information, see More About.
Data Types: char | cell
Strike swap rate values, specified as a NINST-by-1 vector.
Data Types: double
Exercise dates for the swaption, specified as a
NINST-by-1 vector or a
NINST-by-2 vector using a datetime array, string
array, or date character vectors, depending on the option type.
For a European option,
ExerciseDatesare aNINST-by-1vector of exercise dates. Each row is the schedule for one option. When using a European option, there is only oneExerciseDateon the option expiry date.For an American option,
ExerciseDatesare aNINST-by-2vector of exercise date boundaries. For each instrument, the option can be exercised on any coupon date between or including the pair of dates on that row. If only one non-NaNdate is listed, or ifExerciseDatesisNINST-by-1, the option can be exercised between theValuationDateof the tree and the single listedExerciseDate.
To support existing code, swaptionbybk also
accepts serial date numbers as inputs, but they are not recommended.
Number of basis points over the reference rate, specified as
a NINST-by-1 vector.
Data Types: double
Settlement date (representing the settle date for each swap), specified as a
NINST-by-1 vector using a datetime array, string
array, or date character vectors,. The Settle date for every swaption
is set to the ValuationDate of the BK tree. The swap argument
Settle is ignored. The underlying swap starts at the maturity of
the swaption.
To support existing code, swaptionbybk also
accepts serial date numbers as inputs, but they are not recommended.
Maturity date for each swap, specified as a NINST-by-1
vector using a datetime array, string array, or date character vectors.
To support existing code, swaptionbybk also
accepts serial date numbers as inputs, but they are not recommended.
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN, where Name is
the argument name and Value is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name in quotes.
Example: [Price,PriceTree] = swaptionbybk(BKTree,OptSpec,
ExerciseDates,Spread,Settle,Maturity,'SwapReset',4,'Basis',5,'Principal',10000)
(Optional) Option type, specified as the comma-separated pair consisting of
'AmericanOpt' and
NINST-by-1 positive integer flags with values:
0— European1— American
Data Types: double
Reset frequency per year for the underlying swap, specified as the comma-separated pair
consisting of 'SwapReset' and a
NINST-by-1 vector or
NINST-by-2 matrix representing the reset
frequency per year for each leg. If SwapReset is
NINST-by-2, the first column represents the
receiving leg, while the second column represents the paying leg.
Data Types: double
Day-count basis representing the basis used when annualizing the input forward rate tree for
each instrument, specified as the comma-separated pair consisting of
'Basis' and a NINST-by-1
vector or NINST-by-2 matrix representing the
basis for each leg. If Basis is
NINST-by-2, the first column represents the
receiving leg, while the second column represents the paying leg.
0 = actual/actual
1 = 30/360 (SIA)
2 = actual/360
3 = actual/365
4 = 30/360 (PSA)
5 = 30/360 (ISDA)
6 = 30/360 (European)
7 = actual/365 (Japanese)
8 = actual/actual (ICMA)
9 = actual/360 (ICMA)
10 = actual/365 (ICMA)
11 = 30/360E (ICMA)
12 = actual/365 (ISDA)
13 = BUS/252
For more information, see Basis.
Data Types: double
Notional principal amount, specified as the comma-separated pair consisting of
'Principal' and a
NINST-by-1 vector.
Data Types: double
Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct
Output Arguments
Expected prices of the swaptions at time 0, returned as a NINST-by-1 vector.
Tree structure of instrument prices, returned as a MATLAB® structure
of trees containing vectors of swaption instrument prices and a vector
of observation times for each node. Within PriceTree:
PriceTree.PTreecontains the clean prices.PriceTree.tObscontains the observation times.
More About
A swaption (swap option) is a financial derivative that gives the holder the right, but not the obligation, to enter into an interest-rate swap agreement at a specified future date and under predetermined terms.
Swaptions are used by investors and institutions to hedge against interest rate fluctuations or to speculate on future changes in interest rates.
A call swaption or payer swaption allows the option buyer to enter into an interest-rate swap in which the buyer of the option pays the fixed rate and receives the floating rate.
A put swaption or receiver swaption allows the option buyer to enter into an interest-rate swap in which the buyer of the option receives the fixed rate and pays the floating rate.
Version History
Introduced before R2006aAlthough swaptionbybk supports serial date numbers,
datetime values are recommended instead. The
datetime data type provides flexible date and time
formats, storage out to nanosecond precision, and properties to account for time
zones and daylight saving time.
To convert serial date numbers or text to datetime values, use the datetime function. For example:
t = datetime(738427.656845093,"ConvertFrom","datenum"); y = year(t)
y =
2021
There are no plans to remove support for serial date number inputs.
See Also
bktree | instswaption | swapbybk | Swaption
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Sélectionner un site web
Choisissez un site web pour accéder au contenu traduit dans votre langue (lorsqu'il est disponible) et voir les événements et les offres locales. D’après votre position, nous vous recommandons de sélectionner la région suivante : .
Vous pouvez également sélectionner un site web dans la liste suivante :
Comment optimiser les performances du site
Pour optimiser les performances du site, sélectionnez la région Chine (en chinois ou en anglais). Les sites de MathWorks pour les autres pays ne sont pas optimisés pour les visites provenant de votre région.
Amériques
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)