linearRegressor
Description
A linear regressor is a lagged output or input variable, such as
        y(t-1) or
      u(t-2). Here, the y term has a lag of
      1 sample and the u term has a lag of 2 samples. A
        linearRegressor object encapsulates a set of linear regressors. Use
        linearRegressor objects when you create nonlinear ARX models using idnlarx or nlarx. linearRegressor
      generalizes the concept of orders in ARX models, or in other words, the
        [na nb nk] matrix, to allow absolute values and noncontiguous lags. Using
        linearRegressor objects also lets you combine linear regressors with
        polynomialRegressor,
        periodicRegressor,
      and customRegressor
      objects in a single regressor set.
Creation
Description
lreg = linearRegressor(Variables,Lags,useAbsolute)UseAbsolute whether to use the absolute values of the
          variables to create the regressors.
Properties
Examples
Version History
Introduced in R2021a
See Also
idnlarx | nlarx | getreg | polynomialRegressor | periodicRegressor | customRegressor
