La traduction de cette page n'est pas à jour. Cliquez ici pour voir la dernière version en anglais.
Modèles ARX non linéaires
Utilisez des modèles ARX non linéaires pour représenter les non-linéarités de votre système au moyen d’estimateurs de non-linéarité tels que les réseaux d'ondelettes, le partitionnement d’arbres et les réseaux sigmoïdes. Pour estimer des modèles ARX non linéaires, utilisez l’application System Identification ou la fonction nlarx.
Applications
| System Identification | Identifier des modèles de systèmes dynamiques à partir de données mesurées |
Fonctions
Blocs
Rubriques
- What Are Nonlinear ARX Models?
Understand the structure of a nonlinear ARX model.
- Available Mapping Functions for Nonlinear ARX Models
Choose from sigmoid, wavelet, tree partition, linear, neural, and custom network nonlinearities.
- Identifying Nonlinear ARX Models
Specify the Nonlinear ARX structure, and configure the estimation algorithm.
- Train NARX Networks Using idnlarx Instead of narxnet
Use
idnlarxas a modern alternative tonarxnetfor estimating nonlinear ARX models. - NARMAX Model Identification
Generate NARMAX models using available model structures and their training algorithms.
- Validate Nonlinear ARX Models
Plot model nonlinearities, analyze residuals, and simulate and predict model output.
- Using Nonlinear ARX Models
Simulate, predict, and forecast model output, linearize nonlinear ARX models, and import estimated models into the Simulink® software.
- Linear Approximation of Nonlinear Black-Box Models
Choose the approach for computing linear approximations, compute operating points for linearization, and linearize your model.
- How the Software Computes Nonlinear ARX Model Output
How the software evaluates the output of nonlinearity estimators and uses this output to compute the model response.







